We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain S8 ≡ σ8(Ωm/0.3) 0.5 = 0.773 +0.026 −0.020 and Ωm = 0.267 +0.030 −0.017 for ΛCDM; for wCDM, we find S8 = 0.782 +0.036 −0.024 , Ωm = 0.284 +0.033 −0.030 , and w = −0.82 +0.
We use 26 × 10 6 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg 2 of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the flat ΛCDM and the wCDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photo-z calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.782 −0.39 . We find results that are consistent with previous cosmic shear constraints in σ 8 -Ω m , and we see no evidence for disagreement of our weak lensing data with data from the cosmic microwave background. Finally, we find no evidence preferring a wCDM model allowing w ≠ −1. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.
We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single-epoch images, co-added images, co-added source catalogs, and associated products and services assembled over the first 3 yr of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ∼5000 deg 2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of = g 1.12, r=0.96, i=0.88, z=0.84, and Y=0 90 FWHM, a photometric precision of <1% in all bands, and an astrometric precision of 151 mas. The median co-added catalog depth for a 1 95 diameter aperture at signal-to-noise ratio (S/N)=10 is g=24.33, r=24.08, i=23.44, z=22.69, and Y=21.44 mag. DES DR1 includes nearly 400 million distinct astronomical objects detected in ∼10,000 co-add tiles of size 0.534 deg 2 produced from ∼39,000 individual exposures. Benchmark galaxy and stellar samples contain ∼310 million and ∼80 million objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive co-add image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
GALSIM is a collaborative, open-source project aimed at providing an image simulation tool of enduring benefit to the astronomical community. It provides a software library for generating images of astronomical objects such as stars and galaxies in a variety of ways, efficiently handling image transformations and operations such as convolution and rendering at high precision. We describe the GALSIM software and its capabilities, including necessary theoretical background. We demonstrate that the performance of GALSIM meets the stringent requirements of high precision image analysis applications such as weak gravitational lensing, for current datasets and for the Stage IV dark energy surveys of the Large Synoptic Survey Telescope, ESA's Euclid mission, and NASA's WFIRST-AFTA mission. The GALSIM project repository is public and includes the full code history, all open and closed issues, installation instructions, documentation, and wiki pages (including a Frequently Asked Questions section). The GALSIM repository can be found at https://github.com/GalSim-developers/GalSim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.