The growth process, crystal structure, and optical properties of ultrathin GaAs and InAs wires (whiskers) as thin as 15–40 nm and about 2 μm long are reviewed and discussed. Experimental results for growing whiskers using Au as a growth catalyst during metalorganic vapor phase epitaxy (MOVPE) and the shape and growth direction of whiskers provide new insight into growth control of GaAs and InAs whiskers. The crystal structure of whiskers, Au behavior during MOVPE, and their growth mechanism are reviewed and discussed on the basis of transmission electron microscopic analysis. The photoluminescence spectra of GaAs wires are compared with those of a GaAs epitaxial layer, and the effect of surface treatment on the luminescence peak energy shift is discussed. The time dependent photoluminescence of GaAs wires is also discussed. The application of GaAs whiskers to light emitting devices is reviewed because a semiconductor wire structure employing quantum size effects is a very important element of electronic and optical devices.
Ultrathin GaAs wires as thin as 15–40 nm and about 2 μm long have been grown on a GaAs substrate by metal-organic vapor-phase epitaxy. The wires, which consist of whiskers, are grown between 380 and 550 °C using trimethylgallium and arsine (AsH3) as source materials. It is found that the wire growth direction is parallel to the [111] arsenic dangling-bond direction and can be perfectly controlled by the crystallographic orientation of the GaAs substrate surface. From transmission electron microscopic analysis it is revealed that the crystal structure of the wire coincides with the zinc-blende type for the growth temperature range of 460–500 °C, but it changes to the wurtzite type at 420 °C and temperatures higher than 500 °C. It is also found that the wires have a twin-type structure around the [111] growth axis for zinc blende and [0001] growth axis for wurtzite. Photoluminescence study of these wires shows that the luminescence peak energy shifts to a higher energy as the wire width decreases from 100 to about 35 nm. In terms of luminescence polarization it is confirmed that the luminescence intensity parallel to the wires is four times greater than that perpendicular to the wires. These results clearly indicate the quantum-size effect of carriers confined in the wire. As a preliminary application to devices, a p-n junction has been formed along the GaAs wire. Light emission by current injection to the p-n junction wires has been observed in continuous operation at room temperature.
Crystal structures of GaAs and InAs whiskers grown by metalorganic vapor phase epitaxy are evaluated by means of a transmission electron microscope. The whiskers are grown epitaxially on GaAs substrates with diameters of 20-100 nm and lengths of 1-5 µm. They have the following characteristics. 1) GaAs whiskers have layered structures with 2-30 nm period, that are the 111 rotating twins of the zinc-blende type. 2) InAs whiskers also have layered structures which consist of wurtzite and zinc-blende type crystals. The wurtzite type InAs is observed for the first time in this study. The volume ratio of these two types strongly depends on the growth conditions, such as substrate temperature and material gas pressure. This suggests that defect-free whiskers with a single phase that are useful for quantum wire devices can be grown by controlling the growth conditions.
A p-n junction is formed for the first time in a cross-sectional area of a GaAs wire crystal with a diameter of about 100 nm. Ultrafine cylindrical growth by metalorganic vapor phase epitaxy is employed for the fabrication. Current-voltage and capacitance-voltage characteristics confirm the formation of the p-n junction in a narrow area at the midpoint of a wire crystal. Intensive light emission by current injection is observed at 77 K and even at room temperature. These results suggest that ultrafine optoelectronic devices with quantum-size p-n junction are possible.
We demonstrate that fiber-based frequency combs with multi-branch configurations can transfer both linewidth and frequency stability to another wavelength at the millihertz level. An intra-cavity electro-optic modulator is employed to obtain a broad servo bandwidth for repetition rate control. We investigate the relative linewidths between two combs using a stable continuous-wave laser as a common reference to stabilize the repetition rate frequencies in both combs. The achieved energy concentration to the carrier of the out-of-loop beat between the two combs was 99% and 30% at a bandwidth of 1 kHz and 7.6 mHz, respectively. The frequency instability of the comb was 3.7x10(-16) for a 1 s averaging time, improving to 5-8x10(-19) for 10000 s. We show that the frequency noise in the out-of-loop beat originates mainly from phase noise in branched optical fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.