Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable 1 . This is thought to be due to the release of find-me signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages, and dendritic cells, leading to the prompt clearance of the dying cells 2 . However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or ectopic CD39 expression)Correspondence and requests for materials should be addressed to K.S.R. (ravi@virginia.edu). Supplementary Information is linked to the online version of the paper at www.nature.com/nature.Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing interests.Author Contributions M.R.E. designed, performed and analyzed most of the experiments in this study with input from K.S.R. F.B.C. performed ATP quantitation experiments. P.T.C. helped with in vivo thymic apoptosis experiments. E.R.L. carried out HPLC analysis of supernatants. S.F.W. generated the CD39 expression plasmid and stable Jurkat cell lines. D.P. conducted phagocytosis experiments. A.K. and N.L. carried out the MS analysis and provided critical support in establishing the air-pouch model system. R.I.W. and J.J.L. carried out immunohistochemical detection of apoptotic cells in the thymus. M.O. and P.S. assisted with the BMDM generation and macrophage chemotaxis experiments. T.K.H. provided critical intellectual input in the preparation of the manuscript. K.S.R. provided overall coordination with respect to conception, design and supervision of the study. K.S.R. and M.R.E. wrote the manuscript with comments from co-authors. NIH Public Access Author ManuscriptNature. Author manuscript; available in PMC 2010 April 8. Most developing thymocytes (95%) undergo apoptosis; yet in steady-state only 1-2% are detectable as apoptotic 4,5 . It is hypothesized that dying thymocytes secrete soluble factors that attract resident phagocytes to promote prompt clearance 2,6 . To determine if apoptotic thymocytes release such factors, cell-free supernatants after apoptosis induction (by antiFas/CD95 crosslinking) were assessed for their ability to attract THP-1 monocytesor primary human monocytes in a transwell migration assay ( Figure 1a and Supplemental Figure S2). Apoptotic supernatants caused a 3-fold increase in monocyte migration compared to supernatants of live thymocytes. Such release of chemotactic factors was also seen with Jurkat cells (...
The classification of receptors for adenosine, ATP and ADP (collectively called purinoceptors) has seen a number of developments in the past three years. The important division of receptors into two major classes 1 (1) adenosine (P 1 ) receptors and (2) P 2 purinoceptors, first suggested by Burnstock in 1978 (Ref.2), has been an abiding one that has set the stage for further subdivision of P 2 purinoceptors into P 2X and P 2Y subtypes on the basis of pharmacological properties 3 . Later, Dubyak 4 summarized the evidence that ATP worked through two different transduction mechanisms: intrinsic ion channels and G protein-coupled receptors. This information, coupled with the cloning of purinoceptors in 1993/94, led Abbracchio and Burnstock 5 to propose that purinoceptors should be classified in two families: G protein-coupled receptors termed P2Y purinoceptors, and intrinsic ion channels termed P2X purinoceptors. Developments in recent years have borne out these expectations and a revised nomenclature, essentially adopting the Abbracchio and Burnstock proposal, can now be proposed.
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.
Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-βs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-β3 bound to activated Gα q reveals a conserved module found within PLC-βs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-β3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-β3 subsequently accelerates guanosine triphosphate hydrolysis by Gα q , causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.Phospholipase C (PLC) catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2 ] to the second messengers inositol 1,4,5-trisphosphate [Ins(1,4,5)P 3 ] and diacylglycerol in an essential step for the physiological action of many hormones, neurotransmitters, growth factors, and other extracellular stimuli (1-3). These cascades use
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.