We investigated the application of pulsed laser ablation (PLA) for the production of magnetic nanoparticles (MNPs)/drug nanocomposites. Magnetic drug delivery vehicles can provide a multifunctional theranostic platform and allow for a combination of diagnostics, monitoring and therapeutics. We applied nanosecond laser pulses at two different wavelengths (Nd:YAG laser, λ 1 = 532 nm/λ 2 = 1064 nm, FWHM = 6 ns) for the ablation of target tablets consisting of a mixture of ibuprofen (as a model drug) and magnetite NPs in various mass ratios. Fourier-transform infrared and Raman spectroscopy investigations of the ablated particles revealed that PLA induced no chemical changes in the pharmaceutical compound. The size distributions of the composite particles were established using a particle size analyzer (scanning mobility particle sizer), and 100-150 nm mean particle size values were obtained. SEM, energy dispersive x-ray spectroscopy and fast photography studies provided morphological and compositional information about the ablated particles. We demonstrated that PLA offers a simple and chemical free method for producing MNPs/drug nanocomposites, and it can be applied for the future development of new theranostic nanosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.