The current trend in the construction industry is the development of projects of multi-storey buildings with a hybrid structural system using mainly timber load-bearing elements. The joints of load-bearing elements are criti-cal points of the frame with glued timber structures in terms of ensuring the load-bearing capacity and servicea-bility of the entire system. Existing publications in this area are mainly aimed at theoretical and experimental as-sessment of the stress-strain state of joints, while information on the construction of components for multi-storey buildings and recommendations for their design is extremely insufficient. The article presents structural solutions of the joints of glued laminated timber columns and beams, namely, hinged, which takes and transmits to the col-umn the support reaction of the beam, and rigid, which in addition to the support reaction takes the bending mo-ment. The support reaction from the beam to the column is transferred through a bolted connection and a T-shaped welded metal element. The bending moment is taken by two angles, which are fixed to the beam and welded to a vertical plate. Criteria of conformity of the proposed joints to load-bearing capacity requirements are pro-posed. The load-bearing capacity of the joint under the action of the support shear force is determined by the shear strength of the bolts in the column; the embedment strength of the metal of the T-shaped plate in the hole and bearing capacity of the bolted connection in the timber element. The action of the support bending moment requires the strength of the angles fastening to the beam and wood in the area of the bolts installation. A detailed algorithm for calculating the proposed design solutions in accordance with the requirements of the design stand-ards has been developed. Keywords: joint, glued laminated timber, beam, column, bearing capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.