The basidiomycete yeast Cryptococcus neoformans is a cause of significant morbidity and mortality in immunocompromised hosts throughout the world. The sporadic nature of the infection and the limited empirical evidence for direct human-to-human transmission have led to the belief that infections in humans are predominantly caused by the inhalation of basidiospores from environmental sources. Therefore, analysing the structure of environmental populations of C. neoformans can significantly increase our understanding of its ecology, evolution and epidemiology. Decaying wood is a rich source of organic and inorganic compounds and is known to be a suitable ecological niche for many micro-organisms, including C. neoformans. However, relatively little is known about the population structure of C. neoformans sampled from decaying wood. In this study, we analysed samples of C. neoformans var. grubii colonizing decaying wood in tree hollows of nine tree species in five geographical locations (Delhi, Bulandshahar, Hathras, Amritsar and Amrouli) in north-western India. Multilocus sequence typing was conducted using five gene fragments for each of 78 isolates. All isolates belonged to mating type a. Population-genetic analyses identified no evidence for significant differentiation among populations belonging to either different geographical areas or different host tree species. Interestingly, despite the lack of mating type a strains in our survey, we found unambiguous evidence for recombination in our population analyses. Our results are consistent with the hypothesis of long-distance dispersal and recombination in environmental populations of this species in India.
This study reports the widespread prevalence of Cryptococcus neoformans and Cryptococcus gattii in decayed wood inside trunk hollows of 14 species representing 12 families of trees and from soil near the base of various host trees from Delhi and several places in the Indian states of Uttar Pradesh, Haryana, Tamil Nadu and Chandigarh Union Territory. Of the 311 trees from which samples were obtained, 64 (20.5%) were found to contain strains of the C. neoformans species complex. The number of trees positive for C. neoformans var grubii (serotypeA) was 51 (16.3%), for C. gattii (serotype B) 24 (7.7%) and for both C. neoformans and C. gattii 11 (3.5%). The overall prevalence of C. neoformans species complex in decayed wood samples was 19.9% (111/556). There was no obvious correlation between the prevalence of these two yeast species and the species of host trees. The data on prevalence of C. gattii (24%) and C. neoformans (26%) in soil around the base of some host trees indicated that soil is another important ecologic niche for these two Cryptococcus species in India. Among our sampled tree species, eight and six were recorded for the first time as hosts for C. neoformans var grubii and C. gattii, respectively. A longitudinal surveillance of 8 host tree species over 0.7 to 2.5 years indicated long term colonization of Polyalthia longifolia, Mimusops elengi and Manilkara hexandra trees by C. gattii and/or C. neoformans. The mating type was determined for 153 of the isolates, including 98 strains of serotype A and 55 of serotype B and all proved to be mating type alpha (MAT alpha). Our observations document the rapidly expanding spectrum of host tree species for C. gattii and C. neoformans and indicate that decayed woods of many tree species are potentially suitable ecological niches for both pathogens.
The isolation is reported of Cryptococcus neoformans var. gattii and C. n. var. neoformans from decayed wood inside trunk hollows of Syzygium cumini and of C. n. var. neoformans from Ficus religiosa trees in the Delhi/New Delhi metropolitan area. Fourteen of sixty-six (21%) S. cumini trees investigated proved to be positive, seven for each variety. The two varieties never co-occurred in the same hollow. C. n. var. neoformans was also isolated from three of seventeen Ficus religiosa-trees. Two of these isolates originated from decayed wood and one from bark. The C. n. var. gattii and C. n. var. neoformans isolates belonged to serotype B and serotype A, respectively. The data strongly supported colonization of S. cumini by both varieties and of F. religiosa trees by C. n. var. neoformans. Evidence of this was found by repeated isolations. For example, in 36/44 (82%) samples for C. n. var. gattii and 22/27 (81%) samples for C. n. var. neoformans, and by a high population density in the tested wood debris (maximally 6 x 10(5) colony-forming units per gram [c.f.u./g] for C. n. var. gattii and 8 x 10(4) c.f.u./g for C. n. var. neoformans). No eucalypt trees were seen near the positive S. cumini and F. religiosa trees. The densities of C. neoformans in these trees exceeded those found previously in Eucalyptus camaldulensis and in other tree species more rarely reported to be sources of C. neoformans in India. S. cumini and F. religiosa appear not to have been reported to date as sources for either C. n. var. gattii or C n. var. neoformans. Our results add to the recently emerging evidence that the natural habitat of C. n. var. gattii and C. n. var. neoformans is not specific to woody or other debris of particular tree species, but instead is more generalized.
The antifungal susceptibility data obtained in this study indicate that the occurrence of primary resistance among environmental isolates of C. neoformans serotype A and C. gattii serotype B is rare, and serotype B isolates are less susceptible than serotype A isolates.
The aim of this study is to report the regional distribution of Cryptococcus. gattii and Cryptococcus. neoformans in decayed wood inside trunk hollows of Syzygium cumini trees (Java plum, Indian black berry) investigated in Amritsar (Panjab), Meerut Cantt. and Bulandshahr (Uttar Pradesh) and Delhi, in north-western India. Two hundred and seventeen wood samples collected from 74 S. cumini trees were investigated. This includes 7 known positive S. cumini trees in Delhi subjected to a mycological surveillance for perennial colonization by C. gattii and C. neoformans. Cryptococcus gattii showed the highest prevalence (89%) in S. cumini trees in Delhi, followed by 27%, 12.5% and 9% prevalence in Bulandshahr, Amritsar City and Meerut Cantt., respectively. In contrast, C. neoformans had the highest prevalence (54%) in Amritsar, followed by 44% in Delhi, 9% in Bulandshahr and 0% in Meerut Cantt. Furthermore, 44% of the S. cumini trees in Delhi, 9% in Bulandshahr and 8% in Amritsar were concomitantly colonized by both C. gattii and C. neoformans. A mycological surveillance over 4.8-5.2 years of 7 selected S. cumini trees in Delhi revealed perennial colonization by both the Cryptococcus species. In addition, air samples taken close to the decayed trunk hollows of 4 of the perennially colonized S. cumini trees contained strains of the C. neoformans species complex. Of a random sample of 48 isolates serotyped, 26 (54%) were C. neoformans, serotype A, and 22 (46%) C. gattii, serotype B. Determination of mating type alleles was done in 44 of the isolates, comprising 31 of C. neoformans, serotype A and 13 of C.gattii, serotype B. All of them proved to be mating type alpha (MATalpha). The data on high prevalence, fungal population density, perennial colonization and aerial isolations indicate that decayed wood in trunk hollows of S. cumini trees is to-date the main well documented primary environmental niche of C. gattii and C. neoformans in north-western India. Attention is drawn to the likely health hazard posed by the environmental reservoirs of C. gattii and C. neoformans occurring in tree trunk hollows in proximity to human and animal habitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.