Abstract:We provide a detailed theoretical investigation of two-photon absorption photoconductivity in semiconductor microcavities. We show that a high enhancement of the non-linear response (>10000) can be obtained due to the microcavity effect. We discuss in detail the design and performance (dynamic range, speed) of such a device with the help of an example of a AlGaAs/GaAs microcavity operating at 900nm. This device is promising for low intensity fast autocorrelation and demultiplexing applications.
Abstract-A GaAs-AlAs microcavity device has been used as a photodetector in an autocorrelator for measuring the temporal pulsewidth of 1.5-m optical pulses. Enhancement of the two-photon absorption photocurrent due to the microcavity structure results in an autocorrelation (average power times peak power) sensitivity of 9 3 10 4 (mW) 2 , which represents two orders of magnitude improvement when compared with conventional autocorrelators.
Abstract-We show the potential use of a single photodetector for multichannel pulse monitoring. Two-photon absorption in a microcavity structure is used as the nonlinear optical technique for pulse monitoring. Angle tuning of the device allows the resonance to be tuned. For the device studied here that is optimized for 2-ps pulses, a possible tuning range of 55 nm is shown.
Abstract-Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-divisionmultiplexed (WDM) and hybrid WDM/optical time-divisionmultiplexed networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.