Two immobilisation methods for enterokinase were developed, which yielded high remaining activities for the cleavage of the fusion protein MUC1-IgG Fc. Different carrier materials were compared regarding remaining enzyme activity and storage stability. Immobilisation procedures involving support material activation using glutardialdehyde were found to result in low remaining activities. Applying less aggressive activation procedures, remaining activities of approximately 60% were received when immobilising enterokinase on either Estapor paramagnetic microspheres or hexamethylamino Sepabeads. In case of hexamethylamino Sepabeads we were able to increase the half-life time 4.3-fold at 23 degrees C and 3.8-fold at 4 degrees C compared to the free enzyme at the same temperatures. By immobilising the biocatalyst the downstream process is simplified allowing the easy removal of the enzyme from the reaction mixture. The immobilised enterokinase cleaves the fusion protein MUC1-IgG Fc in at least two repeated batches, proving the efficiency of the immobilisation method and the reusability of the biocatalyst.
We present an efficient method for the production of d-and l-allo-threonine (allo-Thr) with very high purity by enzymatic isomerization of l-or d-threonine (Thr) and simultaneous crystallization. Isomerization of Thr to allo-Thr is catalyzed by a purified amino acid racemase (AArac12996) from Pseudomonas putida NBRC12996, which can easily be obtained from a recombinant E. coli strain by secretion into the medium and subsequent anion exchange chromatography. Crystallization of d-and l-allo-Thr was performed in a repetitive batch mode over a period of up to 55 days at 30 8C. Total amounts of 30.8 g d-allo-Thr and 32.4 g l-allo-Thr were obtained with a very good diastereomeric excess of de d-allo > 99.2% and de l-allo > 98.4%, respectively, and in good yields (d-allo-Thr: 83%, l-alloThr: 79%). The enzymes remarkable high stability under process conditions resulted in enzyme specific yields of 2.56 g d-allo-Thr per mg AArac12996 and 1.62 g l-allo-Thr per mg AArac12996. In contrast to chemical multi-step syntheses of allo-Thr, our process consists of only one enzyme-catalyzed reaction step with simultaneous product crystallization. The process is performed under low energy consumption (30 8C, atmospheric pressure) in water and avoids the use and production of any toxic or harmful compounds. Recovery of the enantiomerically pure products is performed by simple filtration which reduces downstream processing significantly compared to chromatographic methods which are usually applied.
Bovine enterokinase is a serine protease that catalyzes the hydrolysis of peptide bonds and plays a key role in mammalian metabolism. Because of its high specificity towards the amino acid sequence (Asp)(4)-Lys, enterokinase is a potential tool for the cleavage of fusion proteins, which are gaining more importance in biopharmaceutical production. A candidate for adaptive cancer immunotherapy is mucin 1, which is produced recombinantly as a fusion protein in CHO cells. Here, we present the first repetitive application of immobilized enterokinase for the cleavage of the mucin fusion protein. The immobilization enables a facile biocatalytic process due to simplified separation of the biocatalyst and the target protein. Immobilized enterokinase was applied in a maximum of 18 repetitive reactions. The enzyme utilization (total turnover number) was increased significantly 419-fold compared to unbound enzyme by both immobilization and optimization of process conditions. Slight enzyme inactivation throughout the reaction cycles was observed, but was compensated by adjusting the process time accordingly. Thus, complete fusion protein cleavage was achieved. Furthermore, we obtained isolated mucin 1 with a purity of more than 90% by applying a simple and efficient purification process. The presented results demonstrate enterokinase to be an attractive tool for fusion protein cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.