Binary SnO-P2O5 (SP) glasses with 52-72 SnO mol% were examined. Glass transition temperature, density, refractive index and absorption edge were studied for transparent SP glasses. The structure of SP glasses was evaluated by FT/IR and Raman spectroscopy. The water durability was investigated by weight loss and Raman spectroscopy for SP glass samples immersed in distilled water at 30-70°C. Raman spectra indicated in the immersion test that Q 1 units form and Q 2 units decrease as a result of water attack upon the phosphate chains with increasing immersion time in 62SnO·38P2O5 glass and no structural change was observed in 72SnO·28P2O5 glass. The relationship between the properties and glass structure with chemical bonding is discussed.
Cyanobacteria have developed a light-harvesting antenna complex known as the phycobilisome. When cells are starved for nutrients or exposed to high light, the phycobilisome is rapidly degraded (bleaching). It has been suggested that in the cyanobacterium Synechococcus elongatus PCC 7942, the bleaching process is regulated by a two-component histidine kinase, NblS. To clarify the signaling pathway involving NblS, we identified the NblS-interacting response regulators RpaB and SrrA. In vitro assays using recombinant proteins showed that both RpaB and SrrA can receive phosphoryl groups from autophosphorylated NblS; the NblS-interacting protein SipA clearly enhances the phosphotransfer activity from NblS to RpaB and SrrA. In addition, NblS prefers SrrA over RpaB as the phosphotransfer target with or without SipA. Gel mobility shift assay revealed that both RpaB and SrrA can bind to the upstream region of nblA, a major regulatory factor in the bleaching process. nblA transcript accumulates in nblS or rpaB mutants even under normal growth conditions, while in the srrA disruptant the nblA transcripts are slightly up-regulated under stress conditions. These observations suggest that the bleaching signal transduction pathway via NblS is regulated by RpaB and that SrrA is partially involved.
Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.
K E Y W O R D Samyloid beta, cell debris, Escherichia coli, matrix metalloproteinase-9, microglia, phagocytosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.