A reconstituted collagen membrane from human amnion has been investigated as a source of collagen matrix, which could be used as a substratum for culturing human fibroblasts. The suitability of pepsin-solubilized reconstituted human amniotic membrane, before and after cross-linking with chitosan, as a dermal matrix for culturing fibroblast was assessed by morphologic, physicochemical, cytotoxic and histochemical methods. Measurement of thermodynamic behaviour, by differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA), and tensile strength suggested that the cross-linked membrane had sufficient elasticity to serve as an efficient dermal substrate for in vitro culture of fibroblasts. Fibroblasts cultured on the chitosan cross-linked collagen membrane had good adherence, retaining their morphology as indicated by microscopic analysis. Proliferation of fibroblasts. observed on this membrane affirms its non-toxic nature. These results support the application of reconstituted human amniotic collagen membrane as collagenous scaffolds to culture fibroblasts in vitro.
Researchers face many challenges, both scientific and societal, in the field of tissue engineering. Herein we discuss the challenges in material design, selection of therapeutic cell source, the in vitro culturing of cells and materials, and finally the integration of the cultured construct into the body. We focus special attention on a new approach to the design of a biomaterial that would bridge synthetic and biologic materials seamlessly. The scaffolds we have developed serve as a transitional material between biotic and abiotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.