Background and Purpose-An animal model of chronic cerebral hypoperfusion was developed with coiled clips applied to both carotid arteries of adult Mongolian gerbils for between 1 week and 2 months. In the brain of this animal model, rarefaction of white matter with dilatation of the ventricles was frequently observed. To better understand the mechanism of white matter alteration under cerebral hypoperfusion, the chronological sequence of molecular changes in the cerebral white matter of the animal model was determined. Methods-Specially designed coiled clips were placed around both carotid arteries of Mongolian gerbils to create stenosis without occlusion. Changes in levels of myelin basic protein (MBP) as a marker of myelin, neurofilament H (NFH) as a marker of axonal proteins, and glial fibrillary acidic protein (GFAP) in astroglia after 2 months of cerebral hypoperfusion were analyzed with Western blotting and enzyme-linked immunosorbent assay. Results-Western blotting of the white matter after 2 months of hypoperfusion showed that the levels of MBP and NFH decreased, whereas that of GFAP increased. The time course of MBP and NFH changes determined with enzyme-linked immunosorbent assay revealed that the change of MBP preceded that of NFH. Conclusions-In the present study it was shown that the damage to myelin precedes that to the axon in the white matter in a chronic cerebral hypoperfusion animal model, suggesting that the change in myelin is the primary pathological event in the cerebral white matter under chronic hypoperfusion. The present study may help in understanding the mechanisms of white matter pathology in leukoaraiosis.
Autoradiographic techniques were used to investigate the characteristics of tritiated inositol(1,4,5)trisphosphate ([3H]IP3) and inositol (1,3,4,5) tetrakisphosphate ([3H]IP4) binding to human brain. In brain sections [3H]IP3 exhibited a two-site binding with KD values of 87 nM and 9.3 microM respectively for the higher and lower affinity sites. [3H]IP4 also bound to two sites with KD values of 43 nM and 1.4 microM, respectively. With the conditions fixed in this study, [3H]IP3 and [3H]IP4 autoradiography in the cortex, caudate, hippocampus and cerebellum were performed. The most prominent [3H]IP3 binding among these regions was found in the cerebellum, particularly in the molecular layer. Within the hippocampus, the subiculum and the CA1 region showed much more prominent binding than the other subfields. [3H]IP4, binding was fairly homogeneous in the regions studied, with the exception of a slightly higher binding in the molecular layer of the cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.