The transition from the model of a long Josephson junction of variable width to the model of a junction with a coordinate-dependent Josephson current amplitude is effected through a coordinate transformation. This establishes the correspondence between the classes of Josephson junctions of variable width and quasi-one-dimensional junctions with a variable thickness of the barrier layer. It is shown that for a junction of exponentially varying width the barrier layer of the equivalent quasione-dimensional junction has a distributed resistive inhomogeneity that acts as an attractor for magnetic flux vortices. The curve of the critical current versus magnetic field for a Josephson junction with a resistive microinhomogeneity is constructed with the aid of a numerical simulation, and a comparison is made with the critical curve of a junction of exponentially varying width. The possibility of replacing a distributed inhomogeneity in a Josephson junction by a local inhomogeneity at the end of the junction is thereby demonstrated; this can have certain advantages from a technological point of view. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.