A mechanistic computer model is presented which predicts the 3-D cavity growth during the gasification phase of underground coal gasification. Developed for swelling bituminous coals, the model also obtains reasonable cavity width and length values for shrinking sub-bituminous coals. The model predicts cavity shape and burn-through times based on the coal properties, seam thickness, water reacting and the interwell distance. Employing a 2-D boundary layer model to determine the convective diffusion rate of oxygen to the reacting walls, it is found that natural convection diffusion must be included. The model includes flow in the injection region, the swirling, mixing effect in the cavity, and transitions from thick to thin seam geometry. Simulations of the Hanna II, Phase 2 and Pricetown I field tests, as well as a parametric study on Pittsburgh seam coal, are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.