Tungsten (W), a promising candidate as divertor plasma facing material in magnetic fusion devices, is anticipated to promptly redeposit when sputtered or evaporated from surface due to its small ionization energy and long gyro radius. Using an artificial factor for the reaction cross sections, effects of ionization lengths to the re-deposition rate was studied by a newly developed particle-in-cell code. Treating numbers of particles in a super particle, electric charge, and mass as particle variables in the code, a special scheme for ionization and recombination was developed and used for the calculation. Simulations on W test particles with imaginary properties (neglecting the electric force) revealed the effects of ejection angles. Simulations with secondary electrons from surface showed that the sheath potential is weakened and the re-deposition rate becomes small. It was found that the multi-ionization as well as the ionization mean-free-path influences the re-deposition rate in both simulations.
The detached plasmas due to the volume recombination are studied by using one-dimensional (1D) scrape-offlayer-divertor (SOL-DIV) plasma fluid code with virtual divertor (VD) model. By introducing the anisotropic ion temperature, the parallel momentum transport equation becomes the first-order differential and the Mach number at the sheath entrance is determined self-consistently by the upstream condition. The total particle flux at the divertor plates and the flux amplification factors are shown as functions of the plasma density at the stagnation point and the dependence of these parameters on the heat flux from the core plasma, radial width of the flux tube in the divetor region and the strength of the impurity radiation is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.