We introduce a new method for analyzing and constructing combined modulation and error-correcting codes (ECCs), in particular codes that utilize some form of reverse concatenation and whose ECC decoding scheme requires easy access to soft information. We expand the work of Immink and Wijngaarden and also of Campello, Marcus, New, and Wilson, in which certain bit positions in the modulation code are deliberately left unconstrained for the ECC parity bits, in the sense that such positions can take on either bit value without violating the constraint. Our method of analysis involves creating a single graph that incorporates information on these unconstrained positions directly into the constraint graph without any assumptions of periodicity or sets of unconstrained positions, and is thus completely general. We establish several properties of the tradeoff function that relates the density of unconstrained positions to the maximum code rate. In particular, the tradeoff function is shown to be concave and continuous. Algorithms for computing lower and upper bounds for this function are presented. We also show how to compute the maximum possible density of unconstrained positions and give explicit values for the runlength-limited (RLL ()) and maximum-transition-run (MTR ()) constraints.
We present a graph-theoretic method for analyzing a scheme of combining modulation and error-correcting codes (ECC), in which certain bit positions in the modulation code are left unconstrained for insertion of ECC parity bits. We establish several properties of the tradeoff function that relates the density of unconstrained positions to the maximum code rate, including concavity and continuity.
Abstract-Maximum transition run (MTR) constrained systems are used to improve detection performance in storage channels. Recently, there has been a growing interest in time-varying MTR (TMTR) systems, after such codes were observed to eliminate certain error events and thus provide high coding gain for E n PR4 channels for n = 2; 3.In this work, TMTR constraints parameterized by a vector, whose coordinates specify periodically the maximum runlengths of 1's ending at the positions, are investigated. A canonical way to classify such constraints and simplify their minimal graph presentations is introduced. It is shown that there is a particularly simple presentation for a special class of TMTR constraints and explicit descriptions of their characteristic equations are derived. New upper bounds on the capacity of TMTR constraints are established, and an explicit linear ordering by capacity of all tight TMTR constraints up to period 4 is given. For MTR constrained systems with unconstrained positions, it is shown that the set of sequences restricted to the constrained positions yields a natural TMTR constraint. Using TMTR constraints, a new upper bound on the tradeoff function for MTR systems that relates the density of unconstrained positions to the maximum code rates is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.