<p><strong>Abstract.</strong> The investigation results of large-scale landslides in the central part of Taiwan from Central Geologic Survey identified a new, largescale landslide in the Chashan Village of Alishan Township, Chiayi County (ID: D160) which has the potential to influence the safety of Chashan Village residents. In coordination with the surface geological survey, Chashan site can be divided into three potential sliding areas (zones A, B and C). The paper uses GeoStudio for evaluating the stability of different hydrological and seismic scenarios. The results of scenario simulation show that: (1) In the normal and high water level scenarios, the safety factor obtained in zone A is greater than 1.0, and the initial judgment belongs to the stable state; (2) In the earthquake scenarios, the A4 potential sliding mass in zone A will be collapsed; (3) Through the scenario simulation, when the water level in zone A rises more than 25 meters or the PGA exceeds 160 gal, it is possible to cause the collapse of A4 potential sliding mass. The result of the study will contribute that the complex phenomenon between the stability of landslides and hydrogeological conditions can be revealed and clarified through the detailed study on the hydrogeological investigation, observation and the numerical simulation.</p>
Landslides have caused extensive infrastructure damage and caused human fatalities for centuries. Intense precipitation and large earthquakes are considered to be two major landslide triggers, particularly in the case of catastrophic landslides. The most widely accepted mechanistic explanation for landslides is the effective-stress dependent shear strength reduction due to increases in pore water pressure. The Chashan landslide site, selected for the present study, has been intensively studied from geological, geophysical, geodetic, geotechnical, hydrological, and seismological perspectives. Our seismic monitoring of daily relative velocity changes (dv/v) indicated that landslide material decreases coincided with the first half of the rainy period and increased during the latter half of the rainy period. The geodetic surveys before and after the rainy period identified vertical subsidence without horizontal movement. The results from the multidisciplinary investigation enabled us to draw a conceptual model of the landslide recovery process induced by water loading. Where all sliding materials were stable (safety factor > 1.0), unconsolidated landslide colluvium and impermeable sliding surfaces trapped the seepage water to form a water tank, provided that compact forces were acting on the materials below the sliding boundary. The vertical force of compaction facilitates an increase in the cohesion and strength of landslide materials, thereby increasing the landslide materials’ stability. We demonstrated that the recovery process periodically occurs only under the combined conditions of prolonged and intense precipitation and the related stability conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.