This study aims to isolate and quantify the role of shrinking glaciers in recent hydrological changes in eight watersheds in the southwestern Yukon (Canada) by using an original dual approach that consists of (i) watershed hydrological regime identification, followed by a trend analysis of discharge time series, and (ii) a model-based peak water (PW) analysis using glacier cover change measurements. A distinction between hydrological regimes is a necessary add-up to commonly used trend attribution methods as the lake runoff regime shares common characteristics with the glacier regime. Results show a link between shrinking glaciers and hydrological changes in the region, but the link is complex, and glacier retreat does not explain all the observed changes. Model outputs show that the two watersheds with a glacierized area exceeding 30% and one watershed with 2.9% glacierized area have not reached PW, whereas a 9.2% glacierized watershed and another watershed with 2.1% glacierized area have already passed it. These results suggest that glacierized area alone cannot explain short-term changes related to watershed current position in terms of PW, and the rate of glacier retreat must be considered. By contrast, the actual rate of glacier retreat does not influence long-term changes, such as the magnitude of PW and of the consequent drop in discharge. Once glaciers will have retreated to a point close to extinction, declines in summer discharge from 10% to 70% and proportional to the actual glacier cover are anticipated at watersheds that are currently more than 9% glacierized. Plain Language SummaryIn this study, we aim to understand how shrinking glacier cover affects river discharges. In conditions of continuous retreat, glaciers produce an initial increase in runoff as they lose mass. The discharge then reaches a turning point, a plateau called peak water, and subsequently declines as the volume of glacial ice continues to decrease. When analyzing eight watersheds with different glacier covers in the southwestern Yukon, we found that two watersheds that are 30% covered by glaciers have not yet reached this plateau, and therefore, the discharge will continue to increase. Several watersheds with smaller glacierized portions have passed peak water, which means that the discharge will now continue to decrease. We were also able to estimate the magnitudes of these changes in discharge. We show that two watersheds with 30% glacierized area can still experience a 1.5-to 2-fold increase in discharge and that watersheds currently more than 9% glacierized are predicted to show noticeable changes after peak water, with the possibility of discharge decreasing by a factor of 3 to 5 by the time glaciers have retreated to a point when their hydrological influence at the watershed scale becomes insignificant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.