Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA–histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL.
The specific function of phosphatidylserine (PS) in the context of the development of a hypercoagulable state among individuals with oral squamous cell carcinoma (OSCC) is uncertain. The goal of this study was therefore to assess the exposure of PS on microparticles (MPs) as well as on endothelial and blood cells and to assess procoagulant activity (PCA) as a function of the stage of OSCC progression. We recruited patients with OSCC ( n = 63) as well as healthy controls ( n = 26) to participate in this study. PS exposure was then assessed via confocal microscopy and flow cytometry, revealing that patients with stage III/IV OSCC exhibited higher frequencies of PS-exposing blood cells, MPs, and serum-cultured endothelial cells (ECs) than did patients with stage I/II OSCC or healthy controls. When we conducted functional coagulation assays, we discovered that PS+blood cells, MPs, and serum-cultured ECs from patients with stage III/IV OSCC mediated more rapid coagulation and more substantial production of FXa, thrombin, and fibrin as compared with controls. When samples were treated with the PS antagonist lactadherin, this resulted in an 80% disruption of PCA. Strikingly, when pre- and postoperative samples were compared from patients with stage III/IV OSCC undergoing resective surgery, PCA was significantly reduced in the postoperative samples. After stimulating ECs with inflammatory cytokines, we found by confocal microscopy that they expose PS on their cell membranes, thus generating FVa and FXa binding sites and mediating the formation of fibrin. Together our findings provide evidence that PS+blood cells and MPs are important mediators of the development of a hypercoagulable and prothrombotic state among individuals afflicted by advanced-stage OSCC. As such, a PS blockade may be a viable therapeutic strategy for treating such patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.