International audienceThis work deals with the issue of damage growth in thin woven composite laminates subjected to tensile loading. The conducted tensile tests were monitored on-line with an infrared camera, and tested specimens were analysed using Scanning Electron Microscopy (SEM). Combined with SEM micrographs, observation of heat source fields enabled us to assess the damage sequence. Transverse weft cracking was confirmed to be the main damage mode and fiber breakage was the final damage leading to failure. For cracks which induce little variation of specimen stiffness, the classic "Compliance method" could not be used to compute energy release rate. Hence, we present here a new procedure based on the estimation of heat source fields to calculate the energy release rate associated with transverse weft cracking. The results are then compared to those computed with a simple 3D inverse model of the heat diffusion problem and those presented in the literature
The aim of this work is to increase the study of the notch translaminar propagation of the woven structures, using the InfraRed Thermography (IRT). A test of notch propagation under quasi-static traction was developed and used to study the failure phenomena on two different draping sequences. For each study, a local estimation of dissipated energies, associated with different damages, is carried out using the measurement of the surface temperature field. The study of heat source fields combined with micrographic observations allowed to define the matrix microcracking as the predominant damage phenomenon in crack tip. The critical energy release rate, obtained using IRT, corresponds to critical energy release rate reported in the literature for translaminar rupture of laminates. Furthermore, when brittle cracking develops in a thermosetting matrix laminate, the majority of irreversible mechanical energy (>90%) is dissipated as heat. In the case of brittle cracking, the developed method proves to be an efficient alternative technique for the local measure of energy release rate, even in cases where the variations in stiffness due to cracking phenomena remain low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.