Telomerase activation through induction of its catalytic component telomerase reverse transcriptase (TERT) expression is essential for malignant transformation. TERT promoter mutations namely C228T and C250T that stimulate TERT transcription and telomerase activation have recently been identified in many human malignancies. We thus determined these mutations and their biological and clinical implications in thyroid carcinomas in the present study. The TERT promoter was sequenced in 10 thyroid cancer cell lines and 144 tumors from 20 patients with anaplastic thyroid carcinoma (ATC), 51 with papillary thyroid carcinoma (PTC), 36 with follicular thyroid carcinoma (FTC), and 37 with medullary thyroid carcinoma (MTC). We identified C228T or C250T mutation in 6/8 of ATC cell lines, as well as in tumor tissue from 10/20, 13/51, 8/36 and 0/37 patients with ATC, PTC, FTC and MTC, respectively. In PTC patients, these mutations were exclusively present in the group with age >45 years (P<0.0001), and highly correlated shorter telomeres (P<0.0001) and distant metastasis (P=0.028). The previous radioactivity exposure did not induce the mutation. The presence of C228T or C250T was an independent predictor associated with shorter disease-related survival (DRS) in the entire cohort (P<0.0001), as well as among patients >45 years (P=0.021). ATC patients carrying the mutation survived shorter than those without mutations, although not statistically significant (P=0.129). The TERT promoter mutation was associated with overall survival (P=0.038) and DRS (P=0.058) of FTC patients. Taken together, age- and shorter telomere-dependent TERT promoter mutations occur frequently in follicular cell-derived thyroid carcinoma (ATC, PTC and FTC) but not in parafollicular cell-originated MTC, and may serve as a marker for aggressive disease and poor outcome.
Telomerase activation through induction of telomerase reverse transcriptase (hTERT) contributes to malignant transformation by stabilizing telomeres. Clinical studies demonstrate that higher hTERT expression is associated with cancer progression and poor outcomes, but the underlying mechanism is unclear. Because epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) are key factors in cancer metastasis and relapse, and hTERT has been shown to exhibit multiple biological activities independently of its telomere-lengthening function, we address a potential role of hTERT in EMT and CSCs using gastric cancer (GC) as a model. hTERT overexpression promotes, whereas its inhibition suppresses, EMT and stemness of GC cells, respectively. Transforming growth factor (TGF)-β1 and β-catenin-mediated EMT was abolished by small interfering RNA depletion of hTERT expression. hTERT interacts with β-catenin, enhances its nuclear localization and transcriptional activity, and occupies the β-catenin target vimentin promoter. All these hTERT effects were independent of its telomere-lengthening function or telomerase activity. hTERT and EMT marker expression correlates positively in GC samples. Mouse experiments demonstrate the in vivo stimulation of hTERT on cancer cell colonization. Collectively, hTERT stimulates EMT and induces stemness of cancer cells, thereby promoting cancer metastasis and recurrence. Thus, targeting hTERT may prevent cancer progression by inhibiting EMT and CSCs.
Summary Genomic instability has been proposed as a new mechanism of carcinogenesis involved in hereditary non-polyposis colorectal cancer (HNPCC) and in a large number of sporadic cancers like pancreatic and colon tumours. Mutations in human mismatch repair genes have been found in HNPCC patients, but their involvement in sporadic cancer has not been clarified yet. In this study we screened 21 pancreatic and 23 colorectal sporadic cancers for microsatellite instability by ten and six different microsatellite markers respectively. Microsatellite alterations were observed at one or more loci in 66.6% (14/21) of pancreatic cancers and in 26% (6/23) colon tumours, but all the pancreatic and half of the colon samples showed a low rate of microsatellite instability. All the unstable samples were further analysed for mutations in the hMLH1 and hMSH2 genes and for hypermethylation of the hMLH1 promoter region. Alterations in the hMLH1 gene were found only in colorectal tumours with a large presence of microsatellite instability. None of the pancreatic tumours showed any alteration in the two genes analysed. Our results demonstrate that microsatellite instability is unlikely to play a role in the tumorigenesis of sporadic pancreatic cancers and confirm the presence of mismatch repair gene alterations only in sporadic colon tumours with a highly unstable phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.