Programmed necrosis or necroptosis is an alternative form of cell death that is
executed through a caspase-independent pathway. Necroptosis has been implicated in
many pathological conditions. Genetic or pharmacological inhibition of necroptotic
signaling has been shown to confer neuroprotection after traumatic and ischemic brain
injury. Therefore, the necroptotic pathway represents a potential target for
neurological diseases that are managed by neurosurgeons. In this review, we summarize
recent advances in the understanding of necroptotic signaling pathways and explore
the role of necroptotic cell death in craniocerebral trauma, brain tumors, and
cerebrovascular diseases.
Dysbiotic oral microbiota has been associated with multiple sclerosis. However, the role and mechanism of oral microbiota in the development of multiple sclerosis are still elusive. Here, we demonstrated that ligature-induced periodontitis (LIP) aggravated experimental autoimmune encephalomyelitis (EAE) in mice, and this was likely dependent on the expansion of T helper 17 (Th17) cells. LIP increased the splenic richness of Enterobacter sp., which was able to induce the expansion of splenic Th17 cells and aggravate EAE in mice. LIP also led to enrichment of Erysipelotrichaceae sp. in the gut and increased Th17 cells in the large intestinal lamina propria of EAE mice. Fecal microbiota transplantation from EAE mice with LIP also promoted EAE symptoms. In conclusion, periodontitis exacerbates EAE, likely through ectopic colonization of oral pathobionts and expansion of Th17 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.