Nuclear spin relaxation for liquid gallium embedded into nanoporous matrices was found to accelerate remarkably compared to the bulk melt. NMR measurements on two gallium isotopes showed that the dominant mechanism of relaxation was changed from magnetic to quadrupolar and the relation rate depended on the Larmor frequency. The correlation time of electric field gradient fluctuations was estimated using data for quadrupolar relaxation contribution and was found to increase drastically compared to bulk, which corresponded to slowing down mobility in confined liquid gallium.
The melting-freezing phase transition of gallium confined within Vycor glass was studied by NMR, resistance and acoustic techniques. A single although broadened 71Ga NMR line corresponding to melted gallium was observed in contrast to lineshapes found until now for liquid gallium in porous matrices. A difference between results obtained using the three methods was explained by formation of various confined solid gallium modifications. A depression of the freezing and melting phase transition temperatures and a pronounced hysteresis in the melting-freezing processes were found and are discussed. Heterogeneous nucleation was suggested to explain the dependence of crystallization on temperatures of pre-warming. Irreversible melting was observed for the second gallium modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.