Doppler-based flow analysis methods require acquisition of ultrasound data at high spatio-temporal sampling rates. These rates represent a major technical challenge for ultrasound systems because a compromise between spatial and temporal resolution must be made in conventional approaches. Consequently, ultrasound scanners can either provide full quantitative Doppler information on a limited sample volume (spectral Doppler), or averaged Doppler velocity and/or power estimation on a large region of interest (Doppler flow imaging). In this work, we investigate a different strategy for acquiring Doppler information that can overcome the limitations of the existing Doppler modes by significantly reducing the required acquisition time. This technique is called ultrafast compound Doppler imaging and is based on the following concept: instead of successively insonifying the medium with focused beams, several tilted plane waves are sent into the medium and the backscattered signals are coherently summed to produce high-resolution ultrasound images. We demonstrate that this strategy allows reduction of the acquisition time by a factor of up to of 16 while keeping the same Doppler performance. Depending on the application, different directions to increase performance of Doppler analysis are proposed and the improvement is quantified: the ultrafast compound Doppler method allows faster acquisition frame rates for high-velocity flow imaging, or very high sensitivity for low-flow applications. Full quantitative Doppler flow analysis can be performed on a large region of interest, leading to much more information and improved functionality for the physician. By leveraging the recent emergence of ultrafast parallel beamforming systems, this paper demonstrates that breakthrough performances in flow analysis can be reached using this concept of ultrafast compound Doppler.
Spine stabilization exercises, in which patients are taught to perform isolated contractions of the transverses abdominus (TrA) during ''abdominal hollowing'', are a popular physiotherapeutic treatment for low back pain (LBP). Successful performance is typically judged by the relative increase in TrA thickness compared with that of the internal (OI) and external (OE) oblique muscles, measured using ultrasound. The day-to-day measurement error (imprecision) associated with these indices of preferential activation has not been assessed but is important to know since it influences the interpretation of changes after treatment. On 2 separate days, 14 controls and 14 patients with chronic LBP (cLBP) performed abdominal hollowing exercises in hook-lying, while M-mode ultrasound images superimposed with tissue Doppler imaging (TDI) data were recorded from the abdominal muscles (N = 5 on each side). The fascial lines bordering the TrA, OI and OE were digitized, and muscle thicknesses were calculated. The betweenday error (intra-observer) was expressed as the standard error of measurement, SEM; SEM as a percentage of the mean gave the coefficient of variation (CV). There were no significant between-day differences for the mean values of resting or maximal thickness for any muscle, in either group (P [ 0.05). The median SEM and CV of all thickness variables was 0.71 mm and 10.9%, respectively for the controls and 0.80 mm or 11.3%, respectively for the cLBP patients. For the contraction ratios (muscle thickness contracted/ thickness at rest), the CVs were 3-11% (controls) and 5-12% (patients). The CVs were unacceptably high (30-50%, both groups) for the TrA preferential activation ratio (TrA proportion of the total lateral abdominal muscle thickness when contracted minus at rest). In both the controls and patients, the precision of measurement of absolute muscle thickness and relative change in thickness during abdominal hollowing was acceptable, and commensurate with that typical of biological measurements. The TrA preferential activation ratio is too imprecise to be of clinical use. Knowledge of the SEM for these indices is essential for interpreting the clinical relevance of any changes observed following physiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.