Recent evidence suggests that vascular endothelial growth factor (VEGF) expression is up-regulated by oxidative stressors through activation of hypoxia-inducible Factor 1 (HIF-1). To investigate whether this is a general phenomenon, we studied the effects of the sulfhydryl reagent arsenite on VEGF expression in human ovarian cancer cells. Arsenite potently induces the production of reactive oxygen species (ROS) in several cell systems and directly interacts with sulfhydryl groups of cellular thiols. We report that arsenite induces VEGF mRNA and protein levels in normoxic H134 and OVCAR-3 cells. Arsenite also increases HIF-1␣ protein levels, suggesting a role for HIF-1 in the induction of VEGF expression. Pretreatment with the ROS inhibitors catalase and mannitol attenuated arsenite-induced ROS production, but did not affect induction of VEGF mRNA and HIF-1␣ protein. In contrast, pretreatment with the thiol antioxidants glutathione or N-acetylcysteine completely abrogated both effects, whereas a potentiation was observed by depletion of intracellular glutathione. These results demonstrate that arsenite-induced VEGF mRNA and HIF-1␣ protein expression is independent of increased ROS production but critically regulated by the cellular reduced glutathione content. In addition, these data suggest the involvement of a thiol-sensitive mechanism in the regulation of VEGF mRNA expression and HIF-1␣ protein in human ovarian cancer cells.
Summary The relevance of P170-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) for the sensitivity to CPT-11 was investigated in human malignant cell lines as well as in human tumour xenografts. In vitro, the P-gp-positive sublines BRO/mdrl.1 (transfected with MDR1) and 2780AD were slightly cross-resistant against carboxylesterase-activated CPT-11. Cross-resistance against SN-38 was present in 2780AD cells, but not in BRO/mdrl.1 cells. The P-gp modulators BIBW22BS, verapamil and dexniguldipine partly reversed the resistance against CPT-11 in the P-gp-positive sublines. BIBW22BS was the most effective modulator in the reversal of the resistance against carboxylesterase-activated CPT-11 as well as against in the 2780AD subline. In contrast to doxorubicin and vincristine, the BRO/mdrl.1 xenografts were at least as sensitive to CPT-11 as the BRO xenografts. The 2780AD xenografts were slightly less sensitive than the parent tumours, but there was no difference in topoisomerase I DNA unwinding activity. Therefore, the high retention of the multidrugresistant phenotype of 2780AD cells in vivo may be the cause of the low cross-resistance against CPT-11. The MRP-positive subline GLC4/ADR was cross-resistant against carboxylesterase-activated CPT-11 and SN-38. GLC4/ADR cells, however, demonstrated a twofold lower topoisomerase I activity than GLC4 cells. Cross-resistance against the camptothecin derivatives was not apparent in the MRPtransfected subline of SW1573/Si. In conclusion, P-gp-positive cells show a low cross-resistance against CPT-11/SN38, which is only apparent with high P-gp expression in vivo. MRP does not seem to play a role in the sensitivity to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.