Third-generation synchrotron sources generate strong X-ray beams. The beam's interaction with biomaterials gives rise to concerns related to thermal damage and radiation damage. Of the two issues, the thermal interaction is conducive to rigorous analysis from first principles, although this has not been performed to date in a comprehensive manner. In this study, the interaction of the X-ray beam emanating from a third-generation synchrotron with a typical frozen biocrystal is theoretically studied, focusing specifically on the resulting unsteady (time-dependent) and steady heat-transfer phenomena. A unique regime map is developed to explain and to identify, on the basis of Fourier and Biot numbers as governing parameters, the applicable mathematical models that predict the subsequent thermal behavior. Depending on the values of these parameters, some simplified but realistic 'generic' solutions are generated that are suitable for that particular domain of applicability. Classical heat-transfer theory was used to describe the third-generation X-ray beam and biomaterial thermal interaction. Besides the generalized approach presented, numerous illustrative cases were solved and the resulting temperature levels are explicitly presented. Overall, the resulting thermal behavior of the system, i.e. peak and local temperature distribution, during both early transient development and for sustained long-time steady-state conditions, depends on a number of factors including the amount of energy absorbed, convective heat-transfer film coefficient and gas temperature, the sample size and shape, and the thermophysical properties of the sample and cooling gas. Results of the analysis revealed the strong influence that convection has on the transient and final steady-state temperature of the sample and the impact of internal heat conduction. The characteristic timescales of the important and dominant thermal processes with respect to the two types of thermal models are clearly identified.
Experimental investigations of turbulent heat transfer are made in a large-gap annulus with both rotating and nonrotating inner cylinder. The vertical annular channel has an electrically heated outer wall; the inner wall is thermally and electrically insulated. The axial air flow is allowed to develop before rotation and heating are imparted. The resulting temperature fields are investigated using thermocouple probes located near the channel exit. The wall heat flux, wall axial temperature development, and radial temperature profiles are measured. For each axial Reynolds number, three heat flux rates are used. Excellent correlation is established between rotational and nonrotational Nusselt number. The proper correlation parameter is a physical quantity characterizing the flow helix. This parameter is the inverse, of the ratio of axial travel of the flow helix in terms of hydraulic diameter, per half revolution of the spinning wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.