A brain tumor is a life-threatening neurological condition caused by the unregulated development of cells inside the brain or skull. The death rate of people with this condition is steadily increasing. Early diagnosis of malignant tumors is critical for providing treatment to patients, and early discovery improves the patient's chances of survival. The patient's survival rate is usually very less if they are not adequately treated. If a brain tumor cannot be identified in an early stage, it can surely lead to death. Therefore, early diagnosis of brain tumors necessitates the use of an automated tool. The segmentation, diagnosis, and isolation of contaminated tumor areas from magnetic resonance (MR) images is a prime concern. However, it is a tedious and time-consuming process that radiologists or clinical specialists must undertake, and their performance is solely dependent on their expertise. To address these limitations, the use of computer-assisted techniques becomes critical. In this paper, different traditional and hybrid ML models were built and analyzed in detail to classify the brain tumor images without any human intervention. Along with these, 16 different transfer learning models were also analyzed to identify the best transfer learning model to classify brain tumors based on neural networks. Finally, using different state-of-the-art technologies, a stacked classifier was proposed which outperforms all the other developed models. The proposed VGG-SCNet's (VGG Stacked Classifier Network) precision, recall, and f1 scores were found to be 99.2%, 99.1%, and 99.2% respectively.
Determining body composition via mobile application may circumvent limitations of conventional methods. However, the accuracy of many technologies remains unknown. This investigation assessed the convergent and concurrent validity of a mobile application (LS) that employs 2-dimensional digital photography (LS2D) and 3-dimensional photonic scanning (LS3D). Measures of body composition including circumferences, waist-to-hip ratio (WHR), and body fat percentage (BF%) were obtained from 240 healthy adults using LS and a diverse set of conventional methods—Gulick tape, bioelectrical impedance analysis (BIA), and skinfolds. Convergent validity was consistently high—indicating these methods vary proportionally and can thus reliably detect changes despite individual measurement differences. The span of the Limits of Agreement (LoA) using LS were comparable to the LoA between conventional methods. LS3D exhibited high agreement relative to Gulick tape in the measurement of WHR, despite poor agreement with individual waist and hip circumferences. In BF%, LS2D exhibited high agreement with BIA and skinfold methods, whereas LS3D demonstrated low agreement. Interestingly, the low inferred bias between LS3D and DXA using existing data suggests that LS3D may have high agreement with dual-energy x-ray absorptiometry. Overall, the suitability of LS2D and LS3D to replace conventional methods must be based on an individual user’s criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.