We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs) on semi-infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a spectral solution of linear multiterm FDEs on semi-infinite interval subject to initial conditions. The generalized Laguerre pseudo-spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate results, and the exact solutions are achieved for some tested problems.
This paper deals with modified generalized Laguerre spectral tau and collocation methods for solving linear and nonlinear multiterm fractional differential equations (FDEs) on the half line. A new formula expressing the Caputo fractional derivatives of modified generalized Laguerre polynomials of any degree and for any fractional order in terms of the modified generalized Laguerre polynomials themselves is derived. An efficient direct solver technique is proposed for solving the linear multiterm FDEs with constant coefficients on the half line using a modified generalized Laguerre tau method. The spatial approximation with its Caputo fractional derivatives is based on modified generalized Laguerre polynomialsLi(α,β)(x)withx∈Λ=(0,∞),α>−1, andβ>0, andiis the polynomial degree. We implement and develop the modified generalized Laguerre collocation method based on the modified generalized Laguerre-Gauss points which is used as collocation nodes for solving nonlinear multiterm FDEs on the half line.
For fractional inverse heat conduction problem (FIHCP), this paper introduces a numerical study. For the proposed FIHCP, in addition to the unknown function of temperature, the boundary heat fluxes are also unknown. Related to the two independent variables, the proposed scheme uses a fully spectral collocation treatment. Our technique is determined to be more accurate, efficient and practicable. The obtained results confirmed the exponential convergence of the spectral scheme.
The numerical analysis of the temporal distributed and spatial Riesz fractional problem (TDSRFP) is presented in this work. To address the two independent variables, the suggested technique employs a completely spectral Legendre collocation approach. For the current model, our technique is proven to be more accurate, efficient, and practical. The results confirmed that the spectral scheme is exponentially convergent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.