Automatic recognition of isolated spoken digits is one of the most challenging tasks in the area of Automatic Speech Recognition. In this paper, Database Development and Automatic Speech Recognition of Isolated Pashto Spoken Digits from Sefer (0) to Naha (9) has been presented. A number of 50 individual Pashto native speakers (25 male and 25 female) of different ages, ranging from 18 to 60 years, were involved to utter from Sefer (0) to Naha (9) digits separately. Sony PCM-M 10 linear recorder is used for recoding purpose in the office and home in noise free environment. Adobe audition version 1.0 is used to split the audio of digits into individual digits and result is saved in .wav format. Mel frequency cepstral coefficients is used to extract speech features. K nearest neighbor classifier is used for the first time up to author knowledge in Pashto language to classify the features of speech and compare its accuracy with linear discriminate analysis. The experimental results are evaluated, and the overall average recognition exactitude of 76.8 % is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.