The SIS100 synchrotron utilizes fast ramped superconducting magnets operated with a frequency of 1 Hz. The beam pipe is of elliptic aperture and the dipole magnets are curved. Therefore, elliptic and toroidal multipoles were developed which allow describing the field concisely within the whole aperture. A mole (i.e., a measurement system based on a rotating coil probe with all auxiliary components operating within the magnet's field) was developed able to sustain ramp rates of up to 4 T/s. It was tested in the field of a conventional magnet and in the first SIS100 superconducting prototype magnet. We recall general design issues of the mole and describe their advantages. We present the first measurements of the mole on the SIS100 prototype and compare them to the results obtained with an independent system. We outline how the rotating coil probe measurements have to be interpreted in the curved magnet using toroidal multipoles, and possible further improvements of the system. Index Terms-Fast ramped superconducting magnets, field description, magnetic measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.