Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off and to control their location and motion by applying laser pulses makes them interesting as potential 'pixels' for reconfigurable arrays or all-optical processing units. Theoretical work on cavity solitons has stimulated a variety of experiments in macroscopic cavities and in systems with optical feedback. But for practical devices, it is desirable to generate cavity solitons in semiconductor structures, which would allow fast response and miniaturization. The existence of cavity solitons in semiconductor microcavities has been predicted theoretically, and precursors of cavity solitons have been observed, but clear experimental realization has been hindered by boundary-dependence of the resulting optical patterns-cavity solitons should be self-confined. Here we demonstrate the generation of cavity solitons in vertical cavity semiconductor microresonators that are electrically pumped above transparency but slightly below lasing threshold. We show that the generated optical spots can be written, erased and manipulated as objects independent of each other and of the boundary. Numerical simulations allow for a clearer interpretation of experimental results.
We apply a versatile numerical technique to establishing the existence of cavity solitons (CS) in a semiconductor microresonator with bulk GaAs or multiple quantum well GaAs/AlGaAs as its active layer. Based on a Newton method, our approach implies the evaluation of the linearized operator describing deviations from the exact stationary state. The eigenvalues of this operator determine the dynamical stability of the CS. A typical eigenspectrum contains a zero eigenvalue with which a "neutral mode" of the CS is associated. Such neutral modes are characteristic of models with translational symmetry. All other eigenvalues typically have negative real parts large enough to cause any excitations to die out in a few medium response times. The neutral mode thus dominates the response to external random or deterministic perturbations, and its excitation induces a simple translation of the CS, which are thus stable and robust. We show how to relate the speed with which a CS moves under external perturbations to the projection of the perturbations on to the neutral mode, and give some examples, including weak gradients on the driving field and interaction with other CS. Finally, we show that the separatrix between two stable coexisting solutions: the homogeneous solution and the CS is the intervening unstable CS solution. Our results are important with a view to future applications of CS to optical information processing.
Diffusion tensor imaging (DTI) is a promising imaging technique that provides insight into white matter microstructure integrity and it has greatly helped identifying white matter regions affected by Alzheimer's disease (AD) in its early stages. DTI can therefore be a valuable source of information when designing machine-learning strategies to discriminate between healthy control (HC) subjects, AD patients and subjects with mild cognitive impairment (MCI). Nonetheless, several studies have reported so far conflicting results, especially because of the adoption of biased feature selection strategies. In this paper we firstly analyzed DTI scans of 150 subjects from the Alzheimer's disease neuroimaging initiative (ADNI) database. We measured a significant effect of the feature selection bias on the classification performance (p-value < 0.01), leading to overoptimistic results (10% up to 30% relative increase in AUC). We observed that this effect is manifest regardless of the choice of diffusion index, specifically fractional anisotropy and mean diffusivity. Secondly, we performed a test on an independent mixed cohort consisting of 119 ADNI scans; thus, we evaluated the informative content provided by DTI measurements for AD classification. Classification performances and biological insight, concerning brain regions related to the disease, provided by cross-validation analysis were both confirmed on the independent test.
Abstract. The VLF/LF radio signals method for studying preseimic activity is applied to the Abruzzo earthquake (M=6.3, 6 April 2009). The data collected by three receivers located in Moscow (Russia), Graz (Austria) and Bari (Italy) at about 3000 km, 1000 km and 500 km from the epicenter were used. The signals received from the Sardinia (20.27 kHz) and the Sicily (45.9 kHz) transmitters, both located in Italy, were compared with those received from the Iceland (37.5 kHz), the Great Britain (19.58 kHz) and the Germany (23.4 kHz) transmitters. The propagation paths of the two Italian transmitters cross the epicentral area (seismic paths) unlike the paths of the other three signals (control paths). Using two different analyses, that are the study of the night-time signal and the research of shifts in the evening terminator times, clear anomalies were revealed 2-8 days before the occurrence of the Abruzzo earthquake in the seismic paths, while no anomalies have been found in the control paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.