Applicability of thin HfO2 films as gate dielectric for SiC MOSFET transistor is reported. Layers characterisation was done by means of atomic force microscopy and scanning electron microscopy, spectroscopic ellipsometry and C-V and I-V measurements of MIS structures. High permittivity dielectric layers were deposited using atomic layer deposition. Investigation showed high value of κ = 15 and existence of high density surface states (5 × 10 12 eV −1 cm −2 ) on HfO2/SiC interface. High leakage current is caused probably due to low conduction band offset between hafnium oxide and silicon carbide.
Silicon carbide (SiC) is a wide band gap semiconductor having good thermal conductivity and high break down voltage. Formation of SiO2layer in thermal oxidation process completes the set of properties of SiC as a promising material for fabrication of high power and high frequency electronic devices. This picture is perturbed by Near Interface Traps (NIT's) that decrease the surface mobility of charge carriers. The origin of NIT's is still the subject of discussion and there are several candidates for NIT's. One possibility is the formation of carbonic structures during the process of manufacturing of MOS-type structures. The aim of this work was to look for possible carbonic inclusions with Raman spectroscopy. The attention of authors was focused on non-destructive way of application of the experimental technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.