The t-pebbling number, f t (G), of a connected graph G, is the smallest positive integer such that from every placement of f t (G) pebbles, t pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move removes two pebbles of a vertex and placing one on an adjacent vertex. In this paper, we determine the t-pebbling number for Jahangir graph J 3,m and finally we give a conjecture for the t-pebbling number of the graph J n,m .
Let G be a graph and some pebbles are distributed on its vertices. A pebbling move (step) consists of removing two pebbles from one vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The t-pebbling number of a graph G is the least integer m such that from any distribution of m pebbles on the vertices of G, we can move t pebbles to any specified vertex by a sequence of pebbling moves. In this paper, we determine the t-pebbling number of Lamp graphs.
The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.