TAE Technologies' research is devoted to producing high temperature, stable, long-lived field-reversed configuration (FRC) plasmas by neutral-beam injection (NBI) and edge biasing/control. The newly constructed C-2W experimental device (also called "Norman") is the world's largest compact-toroid (CT) device, which has several key upgrades from the preceding C-2U device such as higher input power and longer pulse duration of the NBI system as well as installation of inner divertors with upgraded electrode biasing systems. Initial C-2W experiments have successfully demonstrated a robust FRC formation as well as its translation into the confinement vessel through the newly installed inner divertor with adequate guide magnetic field. They also produced dramatically improved initial FRC parameters with higher plasma temperatures (Te up to 300 eV; total electron and ion temperature >1.5 keV) and more trapped flux (up to ~15 mWb, based on rigid-rotor model) inside the FRC immediately after the merger of collided two CTs in the confinement section. As for effective edge biasing/control on FRC stabilization, a number of edge biasing schemes have been tried via open-fieldlines, in which concentric electrodes located in both inner and outer divertors as well as end-on plasma guns are electrically biased independently. As a result of effective outer-divertor electrode biasing alone, FRC plasma diamagnetism duration has reached up to ~9 ms which is equivalent to C-2U plasma duration. Magnetic field flaring/expansion in both inner and outer divertors plays an important role in creating a thermal insulation on open-field-lines to reduce a loss rate of electrons, which leads to improvement of the edge as well as core FRC confinement properties.
TAE Technologies, Inc. (TAE) is pursuing an alternative approach to magnetically confined fusion, which relies on field-reversed configuration (FRC) plasmas composed of mostly energetic and well-confined particles by means of a state-of-the-art tunable energy neutral-beam (NB) injector system. TAE’s current experimental device, C-2W (also called ‘Norman’), is the world’s largest compact-toroid device and has made significant progress in FRC performance, producing record breaking, high temperature (electron temperature, T e > 500 eV; total electron and ion temperature, T tot > 3 keV) advanced beam-driven FRC plasmas, dominated by injected fast particles and sustained in steady-state for up to 30 ms, which is limited by NB pulse duration. C-2W produces significantly better FRC performance than the preceding C-2U experiment, in part due to Google’s machine-learning framework for experimental optimization, which has contributed to the discovery of a new operational regime where novel settings for the formation section and the confinement region yield consistently reproducible, hot, and stable plasmas. An active plasma control system has been developed and utilized in C-2W to produce consistent FRC performance as well as for reliable machine operations using magnets, electrodes, gas injection, and tunable NBs. The active control system has demonstrated stabilization of FRC axial instability. Overall FRC performance is well correlated with NBs and edge-biasing system, where higher total plasma energy is obtained by increasing both NB injection power and applied-voltage on biasing electrodes. C-2W divertors have demonstrated a good electron heat confinement on open-field-lines using strong magnetic mirror fields as well as expanding the magnetic field in the divertors (expansion ratio > 30); the energy lost per electron ion pair, η e ∼ 6–8, is achieved, which is close to the ideal theoretical minimum.
A repetitively driven compact toroid (CT) injector has been developed for the large fieldreversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s −1 . The key plasma parameters of electron density, electron temperature and the number of particles are ~5 × 10 21 m −3 , ~30 eV and 0.5-1.0 × 10 19 , respectively. In this project, singleand double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.
Field-reversed configuration (FRC) Amplification via Translation–Collisional Merging (FAT-CM) experiments have recently commenced to study physics phenomena of colliding and merged FRC plasma states. Two independently formed FRCs are translated into the confinement region of the FAT-CM device, collided near the mid-plane of the device with a relative speed of up to ∼400 km/s, and a final merged FRC plasma state is achieved. To measure internal magnetic field profiles of the translated and merged FRC plasmas as well as to understand its collisional-merging process, an internal magnetic probe array, developed by TAE Technologies, has been installed in the mid-plane of the FAT-CM device. Initial magnetic field measurements indicate that both the translated and the merged FRC plasma states exhibit a clear field-reversed structure, which is qualitatively in good agreement with 2D MHD simulation. It is found and verified that a sufficient mirror field in the confinement region is required for colliding FRCs to be fully merged into a single FRC plasma state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.