Skin cancer is usually classified as melanoma and non-melanoma. Melanoma now represents 75% of humans passing away worldwide and is one of the most brutal types of cancer. Previously, studies were not mainly focused on feature extraction of Melanoma, which caused the classification accuracy. However, in this work, Histograms of orientation gradients and local binary patterns feature extraction procedures are used to extract the important features such as asymmetry, symmetry, boundary irregularity, color, diameter, etc., and are removed from both melanoma and non-melanoma images. This proposed Efficient Classification Systems for the Diagnosis of Melanoma (ECSDM) framework consists of different schemes such as preprocessing, segmentation, feature extraction, and classification. We used Machine Learning (ML) and Deep Learning (DL) classifiers in the classification framework. The ML classifier is Naïve Bayes (NB) and Support Vector Machines (SVM). And also, DL classification framework of the Convolution Neural Network (CNN) is used to classify the melanoma and benign images. The results show that the Neural Network (NNET) classifier' achieves 97.17% of accuracy when contrasting with ML classifiers.
Brain tumors Analysis is problematic somewhat due to varied size, shape, location of tumor and the appearance and presence of brain tumor. Clinicians and radiologist have difficulty in identifying the tumor type. An efficient hybrid feature extraction method to classify the type of
tumor accurately as meningioma, gliomas and pituitary tumor using SVM (support vector machine) classifier is proposed. The modified Non-Local Means (NLM) filter may be effectively used to get the pure image. The NLM filter is compared with common filters like median and wiener. From the denoised
image the classification is done by training SVM using the texture features from the hybrid and efficient feature extraction technique.The accuracy of the classification is calculated and the SVM classifier training individual type of texture features and also with combined texture features
and the performance is analyzed.
A cognitive radio (CR) technology enables all the users to utilise spectrum without interference. There will be a spectrum sensing for all the non-authorised users to perceive the other possibilities of getting a channel. The traffic feature will be unknown to be a priori to design the spectrum predictor with the back propagation (BP) neural network (NN) model and the multi-layer perceptron (MLP).This work proposed an optimised neural network to obtain improved results. The BP algorithm will not require prior knowledge of the real world problems that are trapped within the local minima. This is used widely to solve the problems and found in literature as an evolutionary algorithm like the bacterial foraging optimisation algorithm (BFOA) used for the MLP NN for enhancing the process of learning and improving the rate of convergence as well as accuracy of classification. Performing this spectrum predictor will be analysed using some extensive simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.