Multiobjective evolutionary algorithms (EAs) that use nondominated sorting and sharing have been criticized mainly for their: 1) (3) computational complexity (where is the number of objectives and is the population size); 2) nonelitism approach; and 3) the need for specifying a sharing parameter. In this paper, we suggest a nondominated sorting-based multiobjective EA (MOEA), called nondominated sorting genetic algorithm II (NSGA-II), which alleviates all the above three difficulties. Specifically, a fast nondominated sorting approach with (2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best (with respect to fitness and spread) solutions. Simulation results on difficult test problems show that the proposed NSGA-II, in most problems, is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to Pareto-archived evolution strategy and strength-Pareto EA-two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multiobjective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective seven-constraint nonlinear problem, are compared with another constrained multiobjective optimizer and much better performance of NSGA-II is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.