Stratospheric sudden warming (SSW) is a dramatic phenomenon of the winter stratosphere in which the distribution of chemical constituents, associated chemical tendency, and transport of chemical constituents differ significantly inside and outside of the polar vortex. In this study, the chemical constituent distributions in the major SSW of 2009/2010 were simulated by the Model for Interdisciplinary Research on Climate 3.2-Chemistry-Climate Model (CCM) nudged toward the European Center for Medium-Range Weather Forecasts-Interim Re-Analysis data. The results were compared with Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and Microwave Limb Sounder (MLS) observations. In addition, ozone tendency due to ozone transport and chemical ozone loss in the high-latitude lower stratosphere before and after the SSW was analyzed for the period from 1 January 2010 to 11 February 2010. The evolution and distribution of ozone and HCl inside/outside the polar vortex associated with the vortex shift to the midlatitudes in January are quite similar between SMILES and MLS. Those of ClO are also similar, considering the difference in the local time for the measurement. Analyses of the nudged CCM run indicate that inside the polar vortex at 50 hPa, the ozone concentration increased moderately owing to partial cancelation between the large negative ozone tendency due to chemical ozone destruction and large positive ozone tendency due to horizontal ozone influx from outside of the vortex as well as downward advection. In the region of a high ozone concentration with the same area as that of the polar vortex at 50 hPa, the large increase in ozone was primarily due to a downward advection of ozone. SMILES and MLS observations, nudged CCM simulations, and ozone tendency analyses revealed a highly longitudinal dependent ozone tendency at high latitudes during the SSW.
Abstract. The need to perform long-term simulations with reasonable accuracy has led to the development of massconservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian) tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM), which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and interannual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude-longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF 6 , 222 Rn, and CO 2 . The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed.
[1] The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station provided global measurements of ozone profiles in the middle atmosphere from 12 October 2009 to 21 April 2010. We present validation studies of the SMILES version 2.1 ozone product based on coincidence statistics with satellite observations and outputs of chemistry and transport models (CTMs). Comparisons of the stratospheric ozone with correlative data show agreements that are generally within 10%. In the mesosphere, the agreement is also good and better than 30% even at a high altitude of 73 km, and the SMILES measurements with their local time coverage also capture the diurnal variability very well. The recommended altitude range for scientific use is from 16 to 73 km. We note that the SMILES ozone values for altitude above 26 km are smaller than some of the correlative satellite datasets; conversely the SMILES values in the lower stratosphere tend to be larger than correlative data, particularly in the tropics, with less than 8% difference below~24 km. The larger values in the lower stratosphere are probably due to departure of retrieval results between two detection bands at altitudes below 28 km; it is~3% at 24 km and is increasing rapidly down below.
The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian) tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM), which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid singularity near the poles caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude-longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF<sub>6</sub>, <sup>222</sup>Rn and CO<sub>2</sub>. The results were compared with observations available from the <i>World Data Centre for Greenhouse Gases</i>, GLOBALVIEW and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.