Modern turbojet engines mainly use computerized digital engine control systems. This opens the way for application of advanced algorithms aimed at increasing their operational efficiency and safety. The theory of robust control is a set of methods known for good results in complex control tasks, making them ideal candidates for application in the current turbojet engine control units. Different methodologies in the design of robust controllers, utilizing a small turbojet engine with variable exhaust nozzle designated as iSTC-21v, were therefore investigated in the article. The resulting controllers were evaluated for efficiency in laboratory conditions. The aim was to find a suitable approach and design method for robust controllers, taking into account the limitations and specifics of a real turbojet engine and its hardware, contrary to most studies which have used only simulated environments. The article shows the most effective approach in the design of robust controllers and the resulting speed controllers for a class of small turbojet engines, which can be applied in a discrete digital control environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.