Our recent linkage study of urethane-induced pulmonary adenomas in SMXA RI strains of mouse revealed two host resistance genes, Par1 (chromosome 11) and Par3 (chromosome 12). The map positions of Par1 and Par3 correspond to human 17q11-23 and 14q11-24, based on synteny between mouse and human. In this study, we examined the loss of heterozygosity (LOH) in these two homologous human chromosomal regions in 30 primary lung adenocarcinoma samples with matched normal DNA. Using 15 highly polymorphic markers, two commonly deleted regions were identi®ed on human chromosomes 14 and 17, respectively. At 17q21, nine (53%) of 17 informative tumors showed LOH between D17S588 and D17S518. On the other hand, at 14q11-12, seven (32%) of 22 informative tumors showed LOH at loci between D14S261 and D14S80. Subsequently, we examined 25 squamous cell carcinomas (SQ) and 24 small cell carcinomas (SCC). At 14q11-12, six (38%) of 16 informative SQ and ®ve (42%) of 12 informative SCC showed LOH. In contrast, at 17q11-23, one (7%) of 15 informative SQ and two (14%) of 14 SCC showed LOH. Therefore, the gene on 17q seemed to a ect selectively adenocarcinomas, whereas the other gene on 14q, all three types of lung carcinomas. These observations indicate that a comparative genetic analysis provides a promising approach to survey genes involved in multifactorial process of human lung carcinogenesis.
Two or three sessions of transcatheter arterial infusion (TAI) therapy were performed preoperatively in 13 patients with advanced cervical cancer (stage 3 or more). The efficacy of TAI was evaluated by tumor markers, magnetic resonance imaging (MRI), and postoperative histopathological examination. In all cases, tumor marker levels decreased after TAI therapy, and MRI also showed a decrease in the tumor size in 11/12 patients. The tumor tissue resected at radical hysterectomy showed no viable cancer cells in 6 patients, and no viable extrauterine cancer was detected in 5 more patients. Thus, TAI performed via both internal iliac arteries reduced both tumor size and extension to the parametrium, and it appears to have the potential to be an effective treatment modality for advanced cervical cancer.
The aldehyde degrading function of the ALDH2 enzyme is impaired by Glu504Lys polymorphisms (rs671, termed A allele), which causes alcohol flushing in east Asians, and elevates the risk of esophageal cancer among habitual drinkers. Recent studies suggested that the ALDH2 variant may lead to higher levels of DNA damage caused by endogenously generated aldehydes. This can be a threat to genome stability and/or cell viability in a synthetic manner in DNA repair‐defective settings such as Fanconi anemia (FA). FA is an inherited bone marrow failure syndrome caused by defects in any one of so far identified 22 FANC genes including hereditary breast and ovarian cancer (HBOC) genes BRCA1 and BRCA2 . We have previously reported that the progression of FA phenotypes is accelerated with the ALDH2 rs671 genotype. Individuals with HBOC are heterozygously mutated in either BRCA1 or BRCA2 , and the cancer‐initiating cells in these patients usually undergo loss of the wild‐type BRCA1/2 allele, leading to homologous recombination defects. Therefore, we hypothesized that the ALDH2 genotypes may impact breast cancer development in BRCA1/2 mutant carriers. We genotyped ALDH2 in 103 HBOC patients recruited from multiple cancer centers in Japan. However, we were not able to detect any significant differences in clinical stages, histopathological classification, or age at clinical diagnosis across the ALDH2 genotypes. Unlike the effects in hematopoietic cells of FA, our current data suggest that there is no impact of the loss of ALDH2 function in cancer initiation and development in breast epithelium of HBOC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.