This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme
This paper presents a robust sliding mode controller for a class of unknown nonlinear discretetime systems in the presence of fixed time delay. A neural-network approximation and the Lyapunov-Krasovskii functional theory into the sliding-mode technique is used and a neural-network based sliding mode control scheme is proposed. Because of the novality of Chebyshev Neural Networks (CNNs), that it requires much less computation time as compare to multi layer neural network (MLNN), is preferred to approximate the unknown system functions. By means of linear matrix inequalities, a sufficient condition is derived to ensure the asymptotic stability such that the sliding mode dynamics is restricted to the defined sliding surface. The proposed sliding mode control technique guarantees the system state trajectory to the designed sliding surface. Finally, simulation results illustrate the main characteristics and performance of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.