[1] Color cathodoluminescence (CL) images of unshocked and experimentally shocked sanidine at pressures up to 40.1 GPa showed red-violet emission below 20.0 GPa and blue emission above 20.0 GPa. The phases in these shock-recovered samples were identified as crystalline feldspar for red-violet emitting areas and as diaplectic feldspar glass for blue emitting ones by micro-Raman spectroscopy. CL spectra of these shocked sanidine have emissions at $330, $380 and 400-420 nm of which intensities increase with an increase in shock pressure. Similar UV-blue emissions were found in alkali feldspar and the glass in Martian meteorites and Ries crater impactite. The deconvolution of these CL spectra provides the emission component at 2.948 eV assigned to shock-induced defect center, where this intensity correlates linearly with peak shock-induced pressure on sanidine, with little dependence on composition and structure. The correlation gives quantitative values of the shock pressures experienced by the feldspar, resulting in estimated shock pressures of Martian meteorites and Ries crater impactite. The CL intensity of feldspar has a potential for a universal shock barometer with high spatial resolution ($1 mm) and in a wide pressure range (theoretically $4.5-40.1 GPa). This leads to a breakthrough in understanding the impact histories on Earth, Moon, and Mars.
Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O --Al and Fe 3+ centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm -1 . The Raman spectrum of alkali feldspar has a weak peak at 520 cm -1 , whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm -1 . Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe3+ in the feldspar as it was reported for some lunar feldspars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.