A Multiplier is an essential component that dictates the performance of modern computing systems. However, high power dissipation of CMOS multiplier circuits has become a major concern in sub 45 nm technology nodes. Recently, emerging non-volatile memory (NVM) based hybrid circuits have gained a lot of attention due to the prominent feature of negligible static power consumption. Magnetic tunnel junction (MTJ) based spin-torque memories have been used for low power applications. However, spin-transfer torque magnetic random access memory (STT-MRAM) based hybrid CMOS/MTJ circuits exhibit higher write energy and longer incubation delay. In this work, a differential spin Hall (DSH)-MRAM cell is employed for logic and circuit applications. It stores a pair of complementary bits with low write voltage and reduced area. The variability analysis of DSH-MRAM signifies the availability of sufficient margin between different resistance states. Different types of 8x8 and 4x4 hybrid CMOS/MTJ multipliers are analyzed using DSH based adders and logic gates. The proposed multipliers consume approximately 20% less power and exhibit 19% improvement in power-delay product (PDP) characteristics compared to CMOS based multipliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.