Nanotechnology is widely adapted in many industries for various applications such as manufacture of computer disks, semiconductor devices, medicine, biotechnology and so on. To manufacture such systems, nanopositioning stages are extremely critical as they deliver accuracies up to a few nanometres required in such ultra precise process. Nanopositioning stages are widely used as positioning systems in nanotechnology applications such as lithography, high-end microscopes, testing equipments, etc. The proposed work is aimed to design, fabrication and implementation of closed loop three directional flexure-based nanopositioning stage with improved positioning accuracies. The main challenge for designing a nanopositioning system is to minimise the non-linearities, cross-talk and hysteresis to achieve nanometric motions and to provide high bandwidth for scanning operation through closed loop operation. The static and dynamic testing results of nanopositioning stage shows that system can be used for high speed scanning applications.
This research aims to establish a methodology for machining of toric lenses, using fast tool servo-assisted single point diamond turning and to assess the generated surface for its characteristics. Using the established mathematical model, toric surface is explained to understand the geometry and to generate the parameters required for fast tool servo machining. A toric surface with a major diameter of 18.93 mm and a minor diameter of 15.12 mm has been cut on the intelligent ultra-precision turning machine (iUPTM). The surface profile and surface roughness were measured. After analysing the measurement data of the machined surface, on two perpendicular axes of the toric lens, form accuracy of 0.49 µm peak-to-valley (PV), and surface roughness of 12 nm in Ra, 4–8 nm in Sa are obtained. From the experimental results obtained, it can be concluded that the proposed method is a reasonable alternative for manufacturing toric lens mould.
Micro and Nanopositioning systems are widely used in semiconductor, optics, materials science, photonics packaging, optical focusing objectives etc. This paper is focused on development of high bandwidth flexure based stage for nanopositioning requirements. The speed, nano-metric motions
and positioning accuracy are limited based on the structural vibrations of the flexure based nanopositioning, non-linear characteristics of the piezo-actuators and control system performance. The research work carried out includes design of complaint mechanisms, fabrication of flexure stages
and implementation of closed loop systems to achieve high bandwidth positioning applications. The developed high speed and high bandwidth nanopositioning system are tested for accuracy, linearity and cross talk motions for Nanopositioning applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.