Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.
ABSTRACT/A new, higher dam was installed at Kerkini Reservoir in 1982, causing habitat and landscape disruption. A decrease in the area of grassland and shallow water areas, the rapid disappearance of reedbeds, the appearance of beds of Nymphaea, and the disappearance of half the forest area were all observed between 1982 and 1991. With the new hydrological regime, a lacustrine system was created, with an extensive, rather deep (4-8 m), pelagic zone favorable for the development of coarse fish species throughout the year. After 1982, an increase in fishing effort and a change in the relative abundance of fish species in the catch, including the disappearance of eels and wels, were observed. The impact of the rise in the water level of breeding aquatic birds led to a general decline in species typical of marshy habitats in favor of species preferring deeper open water habitats. A decrease was recorded in bird species that feed largely on invertebrates and to a lesser extent fish (e.g., glossy ibis) and that require extensive shallow feeding areas. There was a decline in geese, whose nests were regularly flooded, and a major increase in piscivorous birds, particularly diving birds (e.g., cormorants), which prefer deeper open water and benefitted directly from the large increase in coarse fish biomass. The disappearance of birds breeding in flooded meadows (e.g., black-winged stilts) and of those restricted to reedbeds (e.g., marsh harrier) occurred from 1983. Over the same period, the changes in populations of wintering birds at Kerkini were different from those occurring in other wetlands in northern Greece. The changes recorded in the populations of wintering birds at Kerkini did not therefore result from overall regional trends but from the major habitat modifications that occurred to this wetland. As for breeding birds, strictly piscivorous species increased greatly as a result of the increased availability of fish, but also due to the appearance of many suitable night roosting sites (flooded trees) and to the great increase in the area of open water greater than 2 m deep. Today, Kerkini has become the most important breeding site in Greece for a majority of colonial waterbirds. In contrast, wintering shorebirds practically disappeared. The many changes recorded in the status of breeding and wintering birds at Kerkini can mostly be explained by the changes that occurred in the functioning of the ecosystem and in the habitat structure following the inauguration of the new hydrological regime. These changes did not all occur at the same time: some were immediate and others required a delay before they could be detected.The loss and degradation of natural wetlands is continuing throughout the Mediterranean region, despite the efforts of many conservation organizations (Britton and Crivelli 1992, Psilovikos 1992). Meanwhile, because of the acute problem of water shortage in the Mediterranean region, many artificial wetlands
Spatial synchrony in population dynamics has been documented recently across a range of taxa, and a number of hypotheses about the mechanisms driving spatial synchrony and the consequences of this phenomenon for the persistence of populations have emerged. Spatial environmental covariance is one of the principal factors influencing this synchrony on a large scale. However, most studies focus on population abundances, and little evidence exists on the spatial synchrony of demographic parameters. We used a 15-year dataset from two populations of a vulnerable bird species, the Dalmatian Pelican (Pelecanus crispus), to identify local and global environmental factors that cause population synchrony. We show that survival rates were temporally synchronised between the studied populations and that a large part ([50 % for both populations) of this covariation was driven by local environmental conditions. Several components of the North Atlantic Oscillation index were correlated with local climatic conditions, but not all of these components can be used as informative proxies for future variation in survival. We also present evidence that an individual's future survival can be strongly influenced by the conditions occurring during the early period of its life. Environmental factors such as water level and food availability had similar influences on breeding success and juvenile survival. Juvenile survival was lower during dry years and years of low food availability. This finding indicated that intraspecific competition may act as a limiting factor for species demography, especially in large populations. Estimating the strength of synchrony is important and should be considered in population and metapopulation analyses and in relationship to conservation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.