Three-dimensional finely grained plastic scintillator
detectors bring many advantages in particle detectors, allowing a
massive active target which enables a high-precision tracking of
interaction products, excellent calorimetry and a sub-nanosecond
time resolution. Whilst such detectors can be scaled up to
several-tonnes, as required by future neutrino experiments, a
relatively long production time, where each single
plastic-scintillator element is independently manufactured and
machined, together with potential challenges in the assembly,
complicates their realisation. In this manuscript we propose a novel
design for 3D granular scintillator detectors where
O(1 cm3) cubes are efficiently glued in a single block of
scintillator after being produced via cast polymerization, which can
enable rapid and cost-efficient detector construction. This work
could become particularly relevant for the detectors of the
next-generation long-baseline neutrino-oscillation experiments, such
as DUNE, Hyper-Kamiokande and ESSnuSB.
Composite materials based on ZnSxSe1–x solid solutions are promising materials for gamma and X-ray detectors. However, influence of compositions and particle size on scintillation properties is unclear, which prevents their application. This paper reports on the complex study of microcrystalline ZnSxSe1–x powdered scintillations, prepared by solid phase synthesis from ZnS and ZnSe initial compounds. ZnSxSe1-x solid solutions were obtained in the range of x from 0.07 to 0.86 and in the following sizes: 200—250, 140—200, 140—80 µm, and less than 80 µm.
X-ray diffractions of powder ZnSxSe1–x shows formation of a cubic lattice of sphalerite structure. ZnSxSe1–x powders demonstrate a presence of a luminescence band in the 590—615 nm regions, while an increase in sulfur concentration leads to a shift of the maximum intensity of X-ray induced luminescence to the short-wave region, which is associated with an increase of the band gap width. The best parameters of X-ray induced luminescence are obtained for the solid solution with 39 at.% of sulfur. The ZnS0,39Se0,61 solid solutions obtained under these conditions have an X-ray induced luminescence intensity that is 4 times higher than that of ZnSe(Al) single crystal and a relatively low level of afterglow.
In ZnSxSe1–x solid solutions, increasing of particle size leads to shifts of the X-ray induced luminescence to the longwave region. The highest intensity of the X-ray induced luminescence corresponds to the ZnS0,39Se0,61 composition with the particle size of less than 80 µm. Also, ZnS0,39Se0,61 solid solutions, with particle size less than 80 microns, are more homogeneous in composition, which is why the process of solid phase reaction in them passes more efficiently.
It is shown that the ZnSxSe1-x composite scintillators can be used as gamma and X-ray detectors. It has been established that the effectiveness of these materials depends on their composition. ZnS0,5Se0,5 and ZnS0,39Se0,61 composites demonstrate the best scintillation characteristics, with twice as high an efficiency as that of the «commercial» ZnSe(Al) composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.