PACS 61.46. Fg, 63.22.+ m In recent experiments by a low-pressure, low-temperature technique, stable nanotubules of rocksalt SiC were synthetized in massive amounts. Ab-initio perturbative density-functional theory calculations in the bulk rocksalt phase provide evidence of drastic phonon softening at a critical pressure of about 2 GPa. To explain the exceptional persistence of the rocksalt structure at ambient conditions we propose that the high pressure induced by interfacial curvature may quench the phonon instability in the nanocrystals down to this minimum threshold, corresponding to the observed nanocrystal size of about 2 nm. Below such pressure the onset of mechanical instability forbids further growth and transformation to ordinary SiC. Nanocrystalline rocksalt SiC is a remarkable example of a material whose unstable, high-pressure phase is stabilized at ambient conditions upon reducing the grain size in the nanometre range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.