Philips Healthcare released a novel metal artifact reduction algorithm for large orthopedic implants (O‐MAR). Little information was available about its CT number accuracy. Since CT numbers are used for tissue heterogeneity corrections in external beam radiotherapy treatment planning, we performed a phantom study to assess the CT number accuracy of O‐MAR. Two situations were simulated: a patient with a unilateral metallic hip prosthesis and a patient with bilateral metallic hip prostheses. We compared the CT numbers in the O‐MAR reconstructions of the simulations to those in the nonO‐MAR reconstruction and to those in a metal‐free baseline reconstruction. In both simulations, the CT number accuracy of the O‐MAR reconstruction was better than the CT number accuracy of the nonO‐MAR reconstruction. In the O‐MAR reconstruction of the unilateral simulation, all CT numbers were accurate within ±5thinmathspaceHU (AAPM criterion). In the O‐MAR reconstruction of the bilateral simulation, CT numbers were found that differed more than ±5thinmathspaceHU from the metal‐free baseline values. However, none of these differences were clinically relevant.PACS numbers: 87.57.Q‐, 87.57.cp
Intraoperative CBCT D90 showed a greater correlation with the day 30 dosimetry than intraoperative TRUS. Edema seemed to cause most of the systematic difference between the intraoperative and day 30 dosimetry. Seeds near the rectal wall showed the most displacement, comparing TRUS and CBCT, probably because of TRUS probe-induced prostate deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.