Radiotherapy is a well-established treatment for cancer. However, the existence of radioresistant cells is one of the major obstacles in radiotherapy. In order to understand the mechanism of cellular radioresistance and develop more effective radiotherapy, we have established clinically relevant radioresistant (CRR) cell lines, which continue to proliferate under daily exposure to 2 Gray (Gy) of X-rays for >30 days. X-ray irradiation significantly induced autophagic cells in parental cells, which was exiguous in CRR cells, suggesting that autophagic cell death is involved in cellular radiosensitivity. An autophagy inducer, rapamycin sensitized CRR cells to the level of parental cells and suppressed cell growth. An autophagy inhibitor, 3-methyladenine induced radioresistance of parental cells. Furthermore, inhibition of autophagy by knockdown of Beclin-1 made parental cells radioresistant to acute radiation. These suggest that the suppression of autophagic cell death but not apoptosis is mainly involved in cellular radioresistance. Therefore, the enhancement of autophagy may have a considerable impact on the treatment of radioresistant tumor.
Radioresistance, which is a major cause of failure of radiotherapy (RT), is proposed as one of the intrinsic characteristics of cancer stem cells (CSCs) whose unique DNA damage response (DDR), efficient DNA repair and resistance to apoptosis are thought to confer the phenotype. We have isolated surviving CSCs by exposure to long-term fractionated radiation for 82 days from HepG2 and A172 cells (82FR-31NR cells). 82FR-31NR cells exhibited CSC properties, such as high expression of CSC marker CD133 and the ABC transporters (MDR1 and BCRP1), and high tumorigenic potential after transplantation into nude mice. The advantage of our isolated CSCs is that they can proliferate in as the same growth medium as that of parental cells without loss of CSC properties. Therefore, we can analyze DDR of non-stem cells and CSCs without any influences caused by different culture conditions. 82FR-31NR cells showed efficient DNA repair of radiation-induced DNA damage and radioresistance with activation of the AKT/cyclin D1 survival signaling pathway. In contrast, DNA damage persisted for a long time after irradiation in parental cells compared with isolated CSCs. Persisted DNA damage induced apoptosis in parental cells without activation of the AKT/cyclin D1 pathway. Therefore, inhibition of the AKT/cyclin D1 pathway by an AKT inhibitor, API-2, or cyclin D1 siRNA resulted in a loss of efficient DNA repair and radiosensitization of 82FR-31NR cells. Furthermore, knockdown of Cdk4 by its siRNA or a Cdk4 inhibitor was sufficient to suppress radioresistance of CSCs. In this study, we present a newly discovered DDR regarding the AKT/cyclin D1/Cdk4 pathway in response to radiation in CSCs. Combination of fractionated RT and reagents targeting the AKT/cyclin D1/Cdk4 pathway to eradicate CSCs would be effective therapeutic modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.