DNA-wrapped single-walled carbon nanotubes (DNA-SWCNTs) in stable dispersion are expected to be used as biosensors in the future, because they have the property of absorption of light in the near infrared (NIR) region, which is safe for the human body. However, this practical application requires the understanding of the DNA-SWCNTs’ detailed response characteristics. The purpose of this study is to predict, in detail, the response characteristics of the absorption spectra that result when the antioxidant catechin is added to oxidized DNA-SWCNTs, from a small amount of experimental data. Therefore, in the present study, we predicted the characteristics of the absorption spectra of DNA-SWCNTs using the Bayesian regularization backpropagation neural network (BRBPNN) model. The BRBPNN model was trained with the catechin concentration and initial absorption peaks as inputs and the absorption spectra after catechin addition as outputs. The accuracy of the predicted absorption peaks and wavelengths after the addition of catechin, as predicted by the BRBPNN model, was within 1% of the error of the experimental data. By inputting the catechin concentrations under hundreds of conditions into this BRBPNN model, we were able to obtain detailed prediction curves for the absorption peaks. This method has the potential to help to reduce the experimental costs and improve the efficiency of investigating the properties of high-cost materials such as SWCNTs.
Rb4Nb6O17 (I), which has the same layered structure as K4Nb6O17 but with a greater interlayer space, is prepared by reaction of Rb2CO3 and Nb2O5 in air at 1523 K (20 h).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.