An unexplained feature was observed at the fatigue crack origin of a number of α/β titanium specimens tested at 450• C in the low cycle fatigue regime. The origin was discoloured blue but this was not a result of temper colouration; this feature sometimes resulted in large reductions in fatigue lives. A number of specimens were examined to determine the cause and formation mechanism of these "blue spots." This feature was associated with elevated oxygen and chloride levels and the presence of sodium. A mechanism based on hot-salt stress-corrosion cracking is proposed and the implications for service components are discussed.
A first attempt at the three-dimensional evaluation of naturally initiated surface connected and internal fatigue cracks is presented. Fatigue crack initiation and growth in air and vacuum environments have been investigated through Xray microtomography in air and vacuum environments at elevated temperatures (350• C), accompanied by post-mortem electron microscopy of the fracture surfaces. In vacuum (< 10 −5 mbar), multiple internal and surface-connected crack initiation was observed, but only the surface-connected cracks grew. In contrast, fewer cracks formed in air, these were mostly surface-connected and all were observed to grow. In all instances the initiation features were associated with globular primary α. An improved fatigue life was found in vacuum, which was mostly a consequence of delayed initiation, but was also due to slower fatigue crack propagation. The non-propagation of internal cracks was taken to imply that even the good laboratory vacuum obtained here was insufficient to simulate the conditions obtained for an internal crack in a component. The crack shape evolved towards a semi-circular shape a/c = 1 in air during fatigue crack growth, whilst the vacuum cracks remained semi-elliptical (a/c 1.4). This was taken to imply that oxide-induced crack closure played a role in fatigue crack growth in air.
Titanium is widely used in demanding applications, such as in aerospace. Its strength-to-weight ratio and corrosion resistance make it well suited to highly stressed rotating components. Zirconium has a no less critical application where its low neutron capture cross section and good corrosion resistance in hot water and steam make it well suited to reactor core use, including fuel cladding and structures. The similar metallurgical behaviour of these alloy systems makes it alluring to compare and contrast their behaviour. This is rarely undertaken, mostly because the industrial and academic communities studying these alloys have little overlap. The similarities with respect to hydrogen are remarkable, albeit potentially unsurprising, and so this paper aims to provide an overview of the role hydrogen has to play through the material life cycle. This includes the relationship between alloy design and manufacturing process windows, the role of hydrogen in degradation and failure mechanisms and some of the underpinning metallurgy. The potential role of some advanced experimental and modelling techniques will also be explored to give a tentative view of potential for advances in this field in the next decade or so.This article is part of the themed issue 'The challenges of hydrogen and metals'.
An observation of the dislocation mechanisms operating below a naturally initiated hot-salt stress corrosion crack is presented, suggesting how hydrogen may contribute to embrittlement. The observations are consistent with the hydrogen-enhanced localized plasticity mechanism. Dislocation activity has been investigated through post-mortem examination of thin foils prepared by focused ion beam milling, lifted directly from the fracture surface. The results are in agreement with the existing studies, suggesting that hydrogen enhances dislocation motion. It is found that the presence of hydrogen in (solid) solution results in dislocation motion on slip systems that would not normally be expected to be active. A rationale is presented regarding the interplay of dislocation density and the hydrogen diffusion length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.