The average white dwarf (WD) masses in cataclysmic variables (CVs) have been measured to significantly exceed those of single WDs, which is the opposite of what is theoretically expected. We present the results of binary population synthesis models taking into account consequential angular momentum loss (CAML) that is assumed to increase with decreasing WD mass. This approach can not only solve the WD mass problem, but also brings in agreement theoretical predictions and observations of the orbital period distribution and the space density of CVs. We speculate that frictional angular momentum loss following nova eruptions might cause such CAML and could thus be the missing ingredient of CV evolution.
Context. The white dwarf (WD) mass distribution of cataclysmic variables (CVs) has recently been found to dramatically disagree with the predictions of the standard CV formation model. The high mean WD mass among CVs is not imprinted in the currently observed sample of CV progenitors and cannot be attributed to selection effects. Two possibilities have been put forward to solve this issue: either the WD grows in mass during CV evolution, or in a significant fraction of cases, CV formation is preceded by a (short) phase of thermal time-scale mass transfer (TTMT) in which the WD gains a sufficient amount of mass. Aims. Here we investigate if and under which conditions a phase of TTMT before CV formation or mass growth in CVs can bring theoretical predictions and observations into agreement. Methods. We employed binary population synthesis models using the binary_c/nucsyn code to simulate the present intrinsic CV population. To that end we incorporated aspects specific to CV evolution such as an appropriate mass-radius relation of the donor star and a more detailed prescription for the critical mass ratio for dynamically unstable mass transfer. We have also implemented a previously suggested wind from the surface of the WD during TTMT and tested the idea of WD mass growth during the CV phase by arbitrarily changing the accretion efficiency. We compare the model predictions of the TTMT and the mass growth model with the characteristics of CVs derived from observed samples. Results. We find that mass growth of the WDs in CVs fails to reproduce the observed WD mass distribution. In the case of TTMT, we are able to produce a large number of massive WDs if we assume significant mass loss from the surface of the WD during the TTMT phase. However, the model still produces too many CVs with helium WDs. Moreover, the donor stars are evolved in many of these post-TTMT CVs, which contradicts the observations. Conclusions. We conclude that in our current framework of CV evolution neither TTMT nor WD mass growth can fully explain either the observed WD mass or the period distribution in CVs.
Context. Observations indicate that stars generally lose their protoplanetary discs on a timescale of about 5 Myr. Which mechanisms are responsible for the disc dissipation is still debated. Aims. Here we investigate the movement through an ambient medium as a possible cause of disc dispersal. The ram pressure exerted by the flow can truncate the disc and the accretion of material with no azimuthal angular momentum leads to further disc contraction. Methods. We derive a theoretical model from accretion disc theory that describes the evolution of the disc radius, mass, and surface density profile as a function of the density and velocity of the ambient medium. We test our model by performing hydrodynamical simulations of a protoplanetary disc embedded in a flow with different velocities and densities. Results. We find that our model gives an adequate description of the evolution of the disc radius and accretion rate onto the disc. The total disc mass in the simulations follows the theoretically expected trend, except at the lowest density where our simulated discs lose mass owing to continuous stripping. This stripping may be a numerical rather than a physical effect. Some quantitative differences exist between the model predictions and the simulations. These are at least partly caused by numerical viscous effects in the disc and depend on the resolution of the simulation. Conclusions. Our model can be used as a conservative estimate for the process of face-on accretion onto protoplanetary discs, as long as viscous processes in the disc can be neglected. The model predicts that in dense gaseous environments, discs can shrink substantially in size and can, in theory, sweep up an amount of gas of the order of their initial mass. This process could be relevant for planet formation in dense environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.